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Abstract

Several learning algorithms in classification and structured prediction are formu-
lated as large scale optimization problems. We show that a generic iterative refor-
mulation and resolving strategy based on the progressive hedging algorithm from
stochastic programming results in a highly parallel algorithm when applied to the
large margin classification problem with nonlinear kernels. We also underline
promising aspects of the available analysis of progressive hedging strategies.

1 Introduction

Decomposition methods are a key ingredient for solving learning problems on large data sets, espe-
cially in the field of Support Vector Machines [20, 13, 8]. At the same time, research in optimization
often strives to identify algorithms with the best potential for parallel computations [5].

This paper presents a strategy for splitting Support Vector Machines learning problems along the
training samples, based on the so-called progressive hedging algorithm (PHA), initially developed
for the field of stochastic programming, and parallel by nature [12]. Besides the formal connection
with stochastic programming, this paper conveys the progressive hedging strategy to large margin
classification in Reproducing Kernel Hilbert Spaces. The resulting algorithm has a linear conver-
gence rate, with inner iteration complexity linear in the size of the data set, except for a single
matrix-vector multiplication. With respect to [7], based on a similar dual ascent strategy but without
augmented Lagrangians, the present approach allows to derive stopping criteria and handles directly
the bias term; more importantly it paves the way towards complexity improvements, as the proximal
point theory on which the analysis of the progressive hedging relies quantifies how approximately
inner iteration problems could be solved. We believe that guarantees of convergence despite approx-
imations and mild non-convexities will be especially valuable in the context of structured prediction
problems, even if here we only investigate what kind of algorithm emerges from ideal conditions.

The paper is organized as follows. Section 2 presents background material. Section 3 presents
the generic decomposition strategy and the progressive hedging algorithm. Section 4 develops the
calculations for large margin classification, and Section 5 concludes.

2 Background

This section recalls that structured prediction is an ill-posed problem, and outlines in such a context
the relevance of proximal point methods — on which progressive hedging is based precisely.

Structured Prediction: Structured prediction consists in learning a mapping h : X → Y where Y
has a complex structure, for instance some input dependent Y(x) for x ∈ X . With P the unknown
distribution generating the input-output pair (x, y) ∈ X × Y , and ` : Y × Y → R a loss function
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penalizing wrong predictions and adapted to the nature of Y , learning means this: Given only a finite
sample set Dn ∈ (X ×Y)n drawn from P

n, find, ideally, the element h of a hypothesis space H that
minimizes the risk

RP(h) = E(x,y)∼P{`(y, h(x))} . (1)

Empirical Risk Minimization as an Ill-Posed Problem: Sample sets Dn allow to approximate

the unknown P by a finite approximation P̂. Replacing P by P̂ in (1) yields the empirical risk.
However, for a fixed size n, small perturbations of the sample set may result in a large perturba-
tion of the empirical risk minimizer. Vapnik recognized that learning from finite data sets is thus
in practice an ill-posed problem. He then chose to built on the regularization method proposed by
Tikhonov for addressing ill-posed problems [17], leading to the development of support vector ma-
chines (SVM) [19].

Large Margin Approach to Structured Prediction: A successful approach to structured predic-
tion [16, 18] consists in letting the structure result from parametric optimization. Given vector-
valued joint feature functions φ(x, y), weights w ∈ W , and the choice of a hypothesis space H such
that

h(x; w) = arg max
y∈Y(x)

wT φ(x, y) , (2)

learning h ∈ H reduces to learning w ∈ W . Note that y ∈ Y(x) may actually represent a large
system of constraints, so that the task of evaluating h may be far from trivial.

In line with SVMs, the learning problem can be cast as a margin maximization problem. For in-

stance, we recall the formulation SVM∆s
1 proposed by Tsochantaridis et al. [18] with C > 0 and

slack variables ξi:

minw, ξ
1
2 ||w||2 + (C/n)

∑n
i=1 ξi, s.t. ∀i, ξi ≥ 0 ,

∀i, ∀y ∈ Y \ {yi} : wT [φ(xi, yi) − φ(xi, y)] ≥ 1 − ξi/`(yi, y) .
(3)

Proximal Point Methods: Proximal point methods solve optimization programs iteratively from
a sequence of regularized programs. According to these methods that provide a unified treatment
of several convex programming techniques [6], a solution to a convex program minx∈X{f(x)},
with x valued in a Hilbert space normed by || · ||, can be obtained, assuming that its solution set is
nonempty, as the limit point of a sequence xν defined as follows: given a sequence {cν}∞ν=0 ⊂ (0, c̄]
with c̄ < ∞ and given an arbitrary initial point x0,

xν+1 ' arg min
x∈X

{f(x) +
cν

2
||x − xν ||2} . (4)

The convergence of xν to a point in the solution set of the original program can be guaranteed
provided xν+1 is close enough to the exact solution of the program in (4). One possible criterion
initially studied in [11] is: there exists a sequence δν such that

||xν+1 − arg min
x∈X

{f(x) +
cν

2
||x − xν ||2}|| ≤ δν ||xν+1 − xν || ,

∑∞
ν=0 δν < ∞ . (5)

The stability of the scheme relies on the regularizing effect of the quadratic term in (4). The leeway
of using inexact solutions for xν+1 was initially moderated by the need for controlling the errors
through conditions such as (5). However, advances have been made in inexact schemes allowing
non-diminishing errors [14]. One will also appreciate, for ill-posed problems, the impact of the
regularizing effect itself, viewed as a by-product of the scheme.

3 Decomposition Strategy

The decomposition strategy that we propose relies on the idea that a program like (3) may be split
into n regularized programs Pν

i dedicated to each sample (xi, yi) ∈ Dn. To each variable shared
among the samples are added n artificial copies proper to each sample i. Programs Pν

i are solved
over their own variables, but iterative modifications of the programs will make duplicated variables
converge towards a unique value as ν → ∞.

The modifications are done according to an augmented Lagrangian strategy [2] coupled with an
averaging scheme that projects the solution on a particular subspace. In fact, the full solution path
followed by the algorithm provides regularized solutions that could be ranked according to a model
selection strategy.
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3.1 Separable Reformulation

Consider an initial convex program

min
w, ξi

f(w) + 1
n

∑n
i=1 fi(ξi), s.t. ∀ i : ξi ∈ Ξi(w), w ∈ W . (6)

Note that (3) is of the form (6) by identifying

f(w) = ||w||2/2, fi(ξi) = C ξi, W = R
m,

Ξi(w) = {ξi ≥ 0 : ∀y ∈ Y \ {yi}, wT [φ(xi, yi) − φ(xi, y)] ≥ 1 − ξi/`(yi, y)} .

Consider also

min
wi, ξi

1
n

∑n
i=1[ f(wi) + fi(ξi) ], s.t. ∀ i : ξi ∈ Ξi(wi), wi ∈ W, (7a)

wi = 1
n

∑n
j=1 wj . (7b)

Programs (6) and (7a-7b) are equivalent since (7b) enforces w1 = w2 = · · · = wn. However, the
second formulation is such that the objective and constraints (7a) are separable in (wi, ξi), while (7b)
are coupling constraints. For brevity, define gi(wi, ξi) = f(wi) + fi(ξi).

Now, the reformulation (7a-7b) has the structure of a so-called two-stage stochastic program with
recourse [3], with first-stage decisions wi = w constant with i, and second-stage decisions ξi

adapted to i. This observation allows us to adapt techniques initially developed in the context
of stochastic programming. In particular, we will exploit the decomposition approach of the
progressive hedging algorithm (PHA) of Rockafellar and Wets [12] for solving stochastic programs,
closely related to the method of partial inverses of Spingarn [15] and the alternating linearization
approach of Kiwiel et al. [9].

3.2 Progressive Hedging

The algorithm introduces variables µν
i , 1 ≤ i ≤ n. They can be interpreted as messages transmitted

to samples i at each iteration ν so as to converge to a unique solution w.

Definition 1 (Progressive Hedging Algorithm) Let c > 0, ε > 0; wν , µν
i ∈ R

m ∀ i.

1. Initialization step: Set w0 = 0, µ0
i = 0. Set ν = 0.

2. Solving step: For each i, solve approximately

Pν
i : min

wi, ξi

gi(wi, ξi) + wT
i µν

i +
c

2
||wi − wν ||2 s.t. ξi ∈ Ξi(wi), wi ∈ W . (8)

Let (w†
i , ξ

†
i ) denote a near-optimal solution to Pν

i .

3. Averaging step: Define w̄ = 1
n

∑n
i=1 w†

i .

4. Update step: Set wν+1 = w̄. Set µν+1
i = µν

i + c (w†
i − w̄).

5. Termination step: Stop if ||wν+1 − wν ||2 + 1
n

∑n
i=1 c−2||µν+1

i − µν
i ||

2 < ε.
Otherwise, set ν to ν + 1 and return to step 2.

Note that the update step for the messages µν
i is akin to a gradient ascent step. Thus, it should

not come as a surprise that the convergence is rather slow, but nearly independent of the problem
dimension. We will argue, following [1], that for ill-posed problems, early stopping of gradient
ascent iterations is in fact appropriate, insofar as high-accuracy solutions do not generalize well, and
following [4], that for large scale learning, convergence rates do not fully determine performances.

Three propositions adapted from [12] describe the ideal behavior of the algorithm.

Proposition 1 Assume that the programs Pν
i are solved exactly, and denote by (w∗

i , ξ∗i ) the unique

minimizer of Pν
i . Recall the definition of wν+1 and µν+1

i from the update step. Then the sequence
(wν , {µν

i }
n
i=1) for ν = 1, 2, . . . converges to an optimal point, in the sense that the accumulation

point w∞ is optimal for (7a-7b), while {µ∞
i }n

i=1 forms an optimal solution to the Lagrangian dual
of (7a-7b). In particular, w∞ is optimal for (6).
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Proposition 2 Assume that the programs Pν
i are solved exactly. Define the distance of the iterate

(wν , {µν
i }

n
i=1) to its limit point as

δν
c = [ 1

n

∑n
i=1

(

||wν − w∞||2 + c−2||µν
i − µ∞

i ||2
)

]1/2 .

Then, as ν → ∞, the sequence δν
c strictly decreases to 0.

Proposition 3 Assume that the programsPν
i are solved exactly. If the objective functions are linear-

quadratic and the feasible sets Ξi(w) are polyhedral, and if the original program (7a-7b) and its
dual have unique optimal solutions, then the convergence rate is linear, in the sense that there is
some θc ∈ [0, 1) such that δν+1

c ≤ θc δν
c .

4 Application to Large Margin Binary Classification

We set X = R
m, Y = {+1,−1}, and focus on the large margin classification problem

maxw, b, ξi

1
2 ||w||2 + C

n

∑n
i=1 ξi s.t. ∀i : yi(w

T xi + b) ≥ 1 − ξi, ξi ≥ 0 .

Since w and b must be constant with i, the averaging and termination steps in the PHA now involve
w, b and the variables (copies and multipliers) associated with them.

To the variables w and b we associate the copies wi, bi and the multipliers µi ∈ R
m and βi ∈ R

respectively. The programs Pν
i in (8) become

minwi, bi, ξi

1
2 ||wi||

2 + Cξi + wT
i µν

i + biβ
ν
i + c

2 ||wi − wν ||2 + c
2 ||bi − bν ||2

s.t. yi(w
T
i xi + bi) ≥ 1 − ξi, ξi ≥ 0 .

(9)

By considering the dual, one obtains an analytical solution to (9). Denoting the projection operator
on the interval [0, C] by Π[0,C]{x} = max{0, min{C, x}}, one has

α∗
i = Π[0,C]

{

yi [ xT
i (µν

i − c wν)/(1 + c) + (βν
i − c bν)/c ] + 1

||xi||2/(1 + c) + 1/c

}

(10)

w∗
i (α∗

i ) = (α∗
i yixi − µν

i + c wν)/(1 + c) b∗i (α
∗
i ) = (α∗

i yi − βν
i + c bν)/c . (11)

It is licit to convey augmented Lagrangian methods to Hilbert spaces thanks to their connection with
proximal point methods [10]. For classification in a Reproducing Kernel Hilbert Space (RKHS)
induced by a positive definite kernel k, we proceed as follows. We take as induction hypothesis the
representations

wν(·) =
∑n

j=1 ων
j k(xj , ·) w∗

i (·) =
∑n

j=1 ω∗
ijk(xj , ·) µν

i (·) =
∑n

j=1 πν
ijk(xj , ·) ,

which holds true at iteration ν = 0 with ω0
j = 0, π0

ij = 0. From (10), (11) we establish the

expressions of α∗
i , ω

∗
ij and obtain, by the PHA steps, update formulae for ων+1

j and πν+1
ij :

α∗
i = Π[0,C]

{

∑n
j=1 yiaijK(xi, xj) + yi (βν

i /c − bν) + 1

k(xi, xi)/(1 + c) + 1/c

}

with aij =
πν

ij − c ων
j

1 + c
,

ω∗
ij =

α∗
i yiδij + c ων

j − πν
ij

1 + c
with δij =

{

1 if i = j

0 if i 6= j
,

ων+1
j = 1

n

∑n
i=1 ω∗

ij ,

πν+1
ij = πν

ij + c (ω∗
ij − ων+1

j ) .

The induction hypothesis is thus verified. The expression of bν+1 will come from (11) with the
new α∗

i and from the PHA steps.

Now, besides the Gram matrix K defined by Kij = k(xi, xj), storage requirements can be made
linear in n. Let 1 ∈ R

n denote a column vector of ones, diag{z} the diagonal matrix with diagonal
elements zi, and check by induction that πν

ij , ω∗
ij can always be written in matrix form as

[πν
ij ] = 1 πA

T + diag{πB} , [ω∗
ij ] = 1 ω∗

A
T + diag{ω∗

B} ,

for some πA, πB , ω∗
A, ω∗

B ∈ R
n. Notice that ω∗

A can be evaluated prior to α∗. Having only
vectors in R

n also simplifies the expression of the norms in the termination step (calculations are
lengthy and omitted here). Hence the final form of the algorithm, with Π[0,C]{·} now understood
componentwise, and � denoting the componentwise product.
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Definition 2 (Kernel Progressive Hedging for Large Margin Classification)

Inputs: C > 0, Gram matrix K ∈ R
n×n, target labels y ∈ R

n with yi ∈ {+1,−1}.
Algorithm Parameters: Proximal parameter c > 0, termination tolerance ε > 0.
Outputs: Weights ων ∈ R

n, bias bν ∈ R for the classifier ŷ(x) = sign{
∑n

i=1 ωik(xi, x) + b}.

Set ν to 0. Initialize vectors α, ω∗
A, ω∗

B, ων , πν
A, πν

B, b∗, βν ∈ R
n to 0. Initialize bν ∈ R to 0.

Define constants g ∈ R
n: gi = Kii, d ∈ R

n: di = (Kii/(1 + c) + 1/c)−1 .

Repeat for ν = 0, 1, . . .

ω∗
A =

c ων − πν
A

1 + c
, α = Π[0,C]

{

d �

[

y �

(

g � πν
B

1 + c
− K ω∗

A

)

+ βν/c − bν
1

]

+ 1

}

,

ω∗
B =

y � α − πν
B

1 + c
,

ων+1 = ω∗
A +

1

n
ω∗

B , πν+1
A = πν

A −
c

n
ω∗

B , πν+1
B = πν

B + c ω∗
B ,

b∗ =
y � α − βν

c
+ bν

1 , bν+1 =
1

T b∗

n
, βν+1 = βν + c (b∗ − bν+1

1)

until the stopping criterion is met, either the exact but quadratic-in-n criterion:

δ1 + δ2 + δ3 + δ4 < ε ,

where δ1 = (ων+1 − ων)T K(ων+1 − ων) , δ2 =
1

n
gT (ω∗

B � ω∗
B) −

1

n2
ω∗

B
T Kω∗

B ,

δ3 = (bν+1 − bν)2 , δ4 =
1

n
(b∗ − bν+1

1)T (b∗ − bν+1
1) ,

or the following approximate criterion:
1

n
gT (ω∗

B � ω∗
B) < ε .

Proposition 4 The criterion 1
ngT (ω∗

B � ω∗
B) < ε is an admissible stopping criterion.

It reduces to ||ω∗
B||2 < nε if the kernel is normalized (that is, if gi = K(xi, xi) = 1).

Proof: The algorithm enforces progressively bi = b and wi(·) = w(·) in the RKHS by enforcing
progressively b∗i = bν for all i and ω∗

ij = ων
j for all i, j. In matrix form, at convergence we have in

particular [ω∗
ij ] = 1ω∗

A
T + diag{ω∗

B} = 1ωνT , implying ω∗
B = 0. �

The decreasing property of the exact stopping criterion is lost. If ε is large, one may need to run a
minimal number of iterations before checking the approximate stopping condition.

Choice of the proximal parameter c : Choosing c is subject to a trade-off, because the effect of c
on the advances towards the primal and the dual solutions are antagonist (as noted in [12], Prop. 5.3).
Concretely, observe from Def. 2 that c intervenes in the updates of ω∗

B and π∗
B in the denominator

and numerator respectively. Using the leeway provided by the proximal point theory, we propose
the following dynamical update rule for c : Choose lower and upper bounds 0 < c ≤ c ≤ +∞ , and
then prior to each iteration ν, define, with componentwise square root and absolute value,

cν = max
{

c, min
{

c,
√

|ω∗
B| |π∗

B |
}}

.

Then replace c in Def. 2 by cν ∈ R
n with componentwise divisions.

Complexity: Evaluating δ1, the second term of δ2, and Kω∗
A is quadratic in n. The first stopping

criterion is the one backed by the theory. However, the evolution of the distance to the solution is well
captured by the first term of δ2, at least after a few iterations. Hence our suggestion of the second
stopping criterion, justified a posteriori by Prop. 4. With this second criterion, at this stage the only
operation which is not linear in n is the evaluation of the matrix-vector multiplication p = Kω∗

A.

Distributed kernel evaluations: Although the exact evaluation of p = Kω∗
A is at worst quadratic

in n for dense Gram matrices, it is not too hard to come up with a scheme for distributing the
calculations among different machines, by exploiting block decompositions of the Gram matrix,
and storing the blocks locally.
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5 Conclusion

We have shown on the large margin classification problem the benefits of a decomposition approach
from stochastic programming. The analysis of the progressive hedging strategy is based on the
theory of proximal point methods; we leave as future work improvements in the complexity of the
resulting algorithms by combining approximations in the evaluation of inner iterations and advances
in the field of proximal point theory itself.
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