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Abstract

In this paper, we propose a formulation of a feature selecting support vector ma-
chine based on the L0-norm. We explore a perspective relaxation of the optimiza-
tion problem and solve it using mixed-integer nonlinear programming (MINLP)
techniques. Given a training set of labeled data instances, we construct a max-
margin classifier that minimizes the hinge loss as well as the cardinality of the
weight vector of the separating hyperplane|| w ||0, effectively performing feature
selection and classification simultaneously in one optimization. We compare this
relaxation with the standard SVM, recursive feature elimination (RFE), L1-norm
SVM, and two approximated L0-norm SVM methods, and show promising results
on real-world datasets in terms of accuracy and sparsity.

1 Introduction

Feature selection is necessary for many classification task such as microarray analysis, mass spec-
trometry analysis, biomedical image analysis, and other modern applications. The data sets from
these domains are typically high dimensional, while only a few of the features may be needed or
helpful for the learning task. Many of the features may be (i) noisy or irrelevant such that ignoring
them would improve the generalization ability of the classifier; (ii) redundant (for example, linear
combinations of other features) such that eliminating them would not drastically change the predic-
tion performance. Other advantages of feature selection can include reduced computational cost in
classifier learning, and better interpretability, for example, in microarray analysis, there is a need to
find critical genes that are disease related.

We address feature selection in the context of linear SVM learning [21] for binary classification
problems. The main goal is to select out an optimal feature subset with as few features as possi-
ble while preserving or improving the discriminative ability of a classifier. Existing approaches of
feature selection for SVMs fall into three categories: filter-based methods, wrapper-based methods,
and embedded algorithms. Filter-based methods adopt feature ranking strategies disjoint from SVM
training [10], such as t2-statistics, and signal-to-noise ratio, etc. Wrapper-based methods order fea-
tures based on the SVM hyperplane parameters or SVM performance on the training dataset [9,
19], such as backward/forward selection, and recursive feature elimination (RFE), etc. Embedded
algorithms augment the SVM formulation, and seek to learn the optimal feature subset as well as
the SVM classifier simultaneously [3, 7, 17, 18, 22, 23], such as Feature Selection Concave (FSV),
and L1-norm SVM, etc.
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In this paper, we propose a feature-selecting vector machine derived from the L0-norm SVM for-
mulation. Unlike L1-norm SVM, which performs feature selection as a by-product because of the
resulting sparse solution, L0-norm SVM directly minimizes on both hinge loss and cardinality of
its weight vector. In the context of regression, where feature selection has been most throughly
studied, it has been pointed out that though the L1 penalization yields sparse solutions, the esti-
mates can be biased since larger penalties are imposed on larger weight coefficients [6]. A recent
comparison study of least absolute shrinkage and selection operator (LASSO) regression [20] and
forward stepwise regression, which is a greedy surrogate of L0-regularization, further indicated that
L1-regularization never outperforms L0-regularization by more than a constant factor, and in some
cases, using an L1-norm penalty is much worse than an L0-norm penalty [14]. This comparison
analysis also pointed out that “an approximation solution to the right problem can be better than the
exact solution to the wrong problem” [14]. Our study follows this guideline. However, optimizing
the L0-norm SVM is a NP-hard problem [1]. Previous work in this direction includes adopting
smoothed approximations of the L0-norm [3, 23, 24], using adaptive scaling parameters to control
the sparsity [22, 7, 18], and exploring the convex relaxations of the cardinality constraint [4].

In this work, we apply mixed-integer nonlinear programming (MINLP) techniques to reformulate
the L0-norm SVM with the introduction of indicator variables and perspective relaxation [8], and
then solve the resulting mixed-integer quadratic program. Empirical comparison of our proposed
mixed-integer SVM method with the standard SVM method [21], RFE method [9], L1-norm SVM
method [3, 15], FSV method [3], and Weston’s method [22], demonstrates either sparser solutions
with roughly identical classification performance, or an increase in classification performance with
similar or sparser representations.

In the next section, we briefly summarize the SVM learning problems, and L1-norm SVM. In section
3, we describe the mixed-integer SVM problem and its convex relaxation formulated as mixed-
integer quadratic problems. Section 4 presents the comparison of the methods on four data sets from
the UCI repository. Finally, in section 5, we conclude and provide several directions for future work.

2 Support Vector Machines

Given a datasetS = {xi, yi}m
i=1 (xi ∈ Rn is the feature vector ofith training instance andyi ∈

{0, 1} is the corresponding label), for two-class classification problems, SVM learns the separating
hyperplanewx = γ that maximizes the margin distance2||w||22

, wherew is the weight vector andγ
is the bias. Definingξ as the slack parameters (for describing the training errors),c > 0 as the error
penalty parameter, diagonal matrixY ∈ Rm×m with Yii = yi, data matrixX = [x1, x2, · · · , xm]T ,
vectorek = [1, 1, · · · , 1]T ∈ Rk, and identity matrixIk ∈ Rk×k, we can formulate SVM learning
problem into the following convex optimization.

minw,γ,ξ
1
2 || w ||22 +c || ξ ||1

s.t. Y (Xw − γem) + ξ ≥ em, ξ ≥ 0 (1)

Definingα ∈ Rm as the Lagrange multiplier andH as the kernel matrix withHij = yiyjxi · xj ,
then the dual problem can be represented as:

minα
1
2αT Hα− eT

mα
s.t. eT

mY α = 0, 0 ≤ α ≤ cem
(2)

The optimal weight vector is then computed asw = XT Y α (α is usually sparse vector, nonzero
only on the support vectors). The optimal discrimination function for a data instancex is f(x) =
w · x− γ = αT Y Xx =

∑m
i=1 yiαixi · x. The prediction label is+1 if f(x) > 0 and−1 otherwise.

2.1 L1-norm SVM

L1-norm SVM proposed by Bradley & Mangasarian (1998) [3] solves the following optimization
problem. It performs feature selection as a by-product of the resulting sparse solution.
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minw,γ,ξ || w ||1 +c || ξ ||1
s.t. Y (Xw − γem) + ξ ≥ em, ξ ≥ 0 (3)

Definew = p− q; p, q ≥ 0. Problem (3) is then equivalent to the linear programming problem.

minp,q,ξ eT
n (p + q) + ceT

mξ
s.t. Y Xp− Y Xq − γY em + ξ ≥ em

p, q ≥ 0, ξ ≥ 0
(4)

Mangasarian [15] proposed a fast algorithm that solves the corresponding asymptotic exterior
penalty problem of the dual problem through Newton’s method. Because of its computational ef-
ficiency and the empirically sparse solutions, L1-norm SVM method and its variants have been
applied to various problems in computation biology and many other domains.

3 Mixed-Integer SVM

In this paper, we consider the following L0-norm SVM formulation:

minw,γ,ξ || w ||0 +c || ξ ||1
s.t. Y (Xw − γem) + ξ ≥ em, ξ ≥ 0 (5)

However, the problem of minimizing the L0-norm is proved to be NP-hard [1]. Inspired by Gunluk
and Linderroth’s work on perspective relaxation of indicator-induced MINLP problems [8], we mod-
ify the above problem by introducingzj , the indicator variable (zj ∈ {0, 1} , zj = 0 ⇒ wj = 0);
uj , the squared upper bound of the weight elementwj ; and the perspective constraints, represented
by the conic constriants:w2

j ≤ zjuj . These define a convex hull ofw2
j = zjuj , which is the equal-

ity we want to enforce. The proposed mixed-integer SVM can then be formulated as the following
mixed-integer quadratically constrained quadratic program.

minz,u,w,γ,ξ aeT
nz + 1

2eT
nu + ceT

mξ
s.t. Y (Xw − γem) + ξ ≥ em, ξ ≥ 0

w2
j − zjuj ≤ 0

1−
∑

j zj ≤ 0 j = 1, · · ·n
z ∈ {0, 1}n, u ≥ 0, ξ ≥ 0

(6)

where vectorz = [z1, · · · , zn]T , u = [u1, · · · , un]T , and constantsa, c > 0 adjust the trade-off
between the cardinality of the weight vector and the hinge loss.

Basically, the objective function tries to minimize the sum of the L0-norm
∑

j zj , the L2-norm upper
bound

∑
j uj , and the hinge loss

∑
i ξi. The first type of constraintsY (Xw−γem)+ξ ≥ em, ξ ≥ 0

regulates the classification error for each training instance. The second type of constraintsw2
j ≤

ujzj enforce that i)wj = 0 whenzj = 0, and ii)uj = w2
j at optimal. The third type of constraints∑

j zj ≥ 1 ensure that at least one feature should be selected (having nonzero indicator variablezj).

However, solving this problem directly with the existing MINLP tools such as Bonmin [2], Cplex
[12] or MINLP [13] fails. The experiments of optimizing this problem over even small datasets
resulted in either infeasible states or unsatisfying solutions with only one nonzero indicator variable.
We believe that the failure of the nonlinear solvers is due to a failure of a constraint qualification:
wheneverzj = 0 during the tree-search or in the solution of continous subproblems in Bonmin, the
relaxation contains a constraintw2

j ≤ 0, which violates Slater’s constraint qualification [11]. While
it is in principle straightforward to remedy this situation by preprocessing the constraintw2

j ≤ 0 and
replacing it bywj = 0, current nonlinear solvers do not perform this operation. The errors that we
observe from the nonlinear solvers are consistent with a failure of a constraint qualification.

To remedy this adverse situation, we further relax the conic constraintsw2
j ≤ ujzj into big-M

constraints| wj |≤ Mzj , whereM is a fixed large number (M was set to104 in our experiments),
resulting in a mixed-integer quadratic problem (P1) .
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minz,w,γ,ξ aeT
nz + 1

2eT
nu + ceT

mξ
s.t. Y (Xw − γem) + ξ ≥ em, ξ ≥ 0

| wj | −Mzj ≤ 0
1−

∑
j zj ≤ 0 j = 1, · · ·n

z ∈ {0, 1}n, ξ ≥ 0

(P1)

4 Results and Discussion

We compared the performance of the proposed MI-SVM (Eqn. (P1)), with the standard SVM (Eqn.
(1)), RFE method [9], L1-norm SVM (Eqn. (3)), and two most commonly-cited L0-norm SVM
approximation methods: FSV [3] and R2W2 (Weston’s method) [22] on four data sets from the UCI
repository [16]. We used Chang and Lin’s LibSVM packages [5] and Mangasarian’s L1-norm SVM
code [15]. We wrote our own RFE, FSV, R2W2 code in MATLAB. CPLEX11.1 has been used for
solving the mixed-integer quadratic problem, Eqn. (P1).

• Ionospheredataset consists of 351 instances with 34 features. There are 225 radar returns
termed “good” or showing some type of structure in the ionosphere, and 126 radar returns
termed “bad”; their signals pass through the ionosphere.

• Wisconsin prognostic breast cancerdataset consists of 198 instances with 32 numerical
features representing follow-up data of the patients. Two of its variants are used.
- The first data set includes 28 patients who had a cancer recurrence in less than 24 months
and 127 patients who didn’t have a cancer recurrence in less than 24 months.
- The second variant of the data set contains 41 patients with a cancer recurrence in less
than 60 months, and 69 patients which cancer had not recurred in less than 60 months.

• SPECTF heart dataset: the training dataset consists of 80 instances with 44 features (40
instances labeled with “1” and “0”, respectively); the testing dataset consists of 187 in-
stances with 172 instances labeled with “1” and 25 labeled with “0”.

We estimate the generalization ability of each method via 10-fold cross validation (10-fold CV),
except for SPECTF as its training and testing split are given. Note that we need to tune the
parameterc of the standard SVM method and the RFE method, parametersδ, c of L1-norm
SVM, parameterλ for FSV method, and parametersa, c of the MI-SVM methods for the per-
formance evaluation. We employ the following tuning procedure on each data set: for each pa-
rameter setting, we perform a 10-fold CV, and the score for this parameter setting is the av-
eraged training accuracy over cross-validation; while for SPECTF data set, we use the training
accuracy as its score. Then we select the parameter setting with the best score (ties are bro-
ken by choosing the sparser solutions). The candidate parameter values used for the experi-
ments werec ∈ {2−7, · · · , 2−1, 1, 21, · · · , 27}, δ ∈ {10−3, 10−2, 10−1, 1, 101, 102, 103}, a ∈
{2−3, · · · , 2−1, 1, 21, · · · , 23}, λ ∈ {0.05, 0.1, 0.15, · · · , 0.85, 0.9, 0.05}. Finally, due to numerical
reasons, for FSV and MI-SVM methods (denoted this approach as MI-SVM1), the optimal weight
elements with small relative magnitude, i.e. |wj |

maxk(|wk|) < 10−4, are set to zero. For MI-SVM
method, since we also obtain the optimal indicator variable assignment after solving Eqn. (P1), thus
we would apply standard SVM to the selected feature subset, consisting of features with non-zero
indicator variables, and obtain the final weight values (denoted this approach as MI-SVM2).

Table 1: Feature Selection Performance (Number of Features Maintained)

SVM RFE L1-SVM FSV R2W2 MI-SVM1 MI-SVM2

Ionosphere 33± 0.0 22.7± 3.9 29.8± 1.2 30.3± 2.0 30.1± 3.8 30.8± 1.1 30.7± 1.2
WPBC24 32± 0.0 27.7± 2.5 24.3± 1.2 5.4± 0.8 27± 7.8 19.1± 1.1 24.3± 2.1
WPBC60 32± 0.0 23.5± 3.7 25.2± 1.8 19.3± 1.6 21.8± 5.7 21.2± 1.5 16.1± 1.2
SPECTF 44 14 28 34 21 12 12

on-average 35.5 22 26.8 22.3 25 20.8 20.8
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Table 2: Classification Performance (Accuracy)

SVM RFE L1-SVM FSV R2W2 MI-SVM1 MI-SVM2

Ionosphere 88.4± 6.4 87.9± 5.9 88.7± 5.5 88.1± 7.3 88.7± 5.5 88.7± 6.1 88.7± 6.1
WPBC24 78.8± 5.0 78.1± 8.7 81.5± 8.8 70.8± 10.6 78.2± 5.6 81.3± 6.8 82.1± 7.6
WPBC60 66.2± 8.0 65.6± 11.7 58.2± 9.5 61.9± 13.4 66.5± 8.2 60.9± 14.3 63.6± 8.9
SPECTF 72.2 75.4 58.8 73.8 73.8 76.5 76.5

on-average 76.4 76.8 71.8 73.7 76.8 76.8 77.7

Table 1 summarizes the feature selection performance, measured by sparsity, that is the number of
features selected by each method, while Table 2 describes the classification performance, measured
by testing accuracy of each classifier. For the first three data sets, we give the average sparsity and
testing accuracy as well as their standard deviations over the 10-fold CV. Overall, the experiment
results show that MI-SVM methods are able to learn sparser representations with roughly identical
or increased classification performance. And MI-SVM2, the approach of applying standard SVM
onto the feature selection results of Eqn. (P1) (features with non-zeros indicator variables) had a
higher prediction performance than MI-SVM1, the approach of simply thresholding out the optimal
weights of Eqn. (P1) that having relative small magnitude.

MI-SVM2 approach achieved the best evaluation performance (77.7% testing accuracy averaged
over the four datasets) with an average sparsity of 20.8. MI-SVM1, RFE, R2W2 methods had the
second best testing accuracy (76.8% on average) with MI-SVM1 having the smallest average spar-
sity (20.8). While L1-norm SVM had the worst evaluation performance (71.8% averaged testing
accuracy) with the an average sparsity of 26.8, and FSV method had the second worst performance
(73.7%). In datasets such as WPBC24, SPECTF, the testing accuracy increase significantly when
using MI-SVM, which indicates that some of the features in these datasets may be noise or irrele-
vant. In other dataset like IONOSPHERE, WPBC60, the accuracy remains roughly the same while
sparsity increases, which suggests that these datasets may contain redundant features. In both cases,
MI-SVM is able to learn a lower dimensional representation with at least comparable classification
performance. The comparison analysis indicates that our MI-SVM method realizes a suitable trade
off between the classification errors and the number of selected features. Moreover, the sparse rep-
resentations learned with the MI-SVM method are generally more predictive than those produced
by the L1-norm SVM or other L0-norm SVM approximations such as FSV method.

5 Conclusion

In this work, we propose a feature-selecting SVM that uses mixed-integer quadratic programming to
solve a robust convex relaxation of the L0-norm SVM. Note that this study is in contrast to previous
work, which either used a smoothed penalty function that approximates the L0-norm in the objec-
tive or used adaptive scale parameters, and then solved through convex optimization techniques.
Empirical results show either an increase in sparsity with comparable classification performance, or
an increase in classification accuracy compared to the most widely-used approaches: the standard
SVM, RFE, L1-norm SVM, FSV and R2W2 (Weston’s method) methods. We believe the approach
is promising for feature-selecting SVM learning, and demonstrates effective MINLP techniques
which have not previous been widely used in machine learning.

Several questions arise from this study. First, is the suggested way to approximate the conic con-
straints using the big-M method the best? We will investigated other convex functions for approxi-
mation. Secondly, the scalability is now constrained by the ability of Cplex to handle high dimen-
sional data sets. We are currently investigating alternative tools and custom approaches to increase
performance as well as the computational cost.
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