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Abstract

Active learning techniques have gained popularity in reducing human effort to an-
notate data instances for inducing a classifier. When faced with large quantities
of unlabeled data, such algorithms automatically select the salient and represen-
tative samples for manual annotation. Batch mode active learning schemes have
been recently proposed to select a batch of data instances simultaneously, rather
than updating the classifier after every single query. While numerical optimization
strategies seem a natural choice to address this problem (by selecting a batch of
points to ensure that a given objective criterion is optimized), many of the pro-
posed approaches are based on greedy heuristics. Also, all the existing work on
batch mode active learning assume that the batch size is given as an input to the
problem. In this work, we propose a novel optimization based strategy to dynam-
ically decide the batch size as well as the specific points to be queried, based on
the particular data stream in question. Our results on the widely used VidTIMIT
and the MBGC biometric datasets corroborate the efficacy of the framework to
adaptively identify the batch size and the particular data points to be selected for
manual annotation, in any batch mode active learning application.

1 Introduction
The fundamental goal in classification is to learn a function f which accurately maps data instances
X into corresponding class labels y. To adequately learn a function with high generalization capa-
bility, it is imperative to acquire sufficient labeled data in the form of a training set. However, while
gathering a huge amount of unlabeled data is cheap and easy, annotating large quantities of data
(with class labels) is an expensive process in terms of time and human labor. This has paved the way
for research in the field of active learning. Active learning algorithms automatically select the ex-
emplar and representative instances, from a set of unlabeled data points, which are to be annotated
manually. This tremendously reduces human labeling effort as only a few sample points, which
are identified by the algorithm, need to be labeled manually. Several active learning algorithms have
been proposed in the pattern recognition literature which can be categorized into 4 groups - (i) SVM
based approaches [1], (ii) Statistical approaches [2], (iii) Ensemble based approaches [3] [4] and
(iv) Other miscellaneous approaches [5][6].

All the aforementioned active learning algorithms query a single data instance at a time and update
the classifier. However, the vast quantities of digital data that are being generated today necessitate
a strategy to simultaneously select and learn from multiple data points. To address this need, Batch
mode active learning (BMAL) schemes, which attempt to select a batch of points at one shot from
the unlabeled set for manual annotation, have been proposed in recent years. Optimization based
techniques can be judiciously used to handle this problem. Depending on the application, one can
define an objective criterion and select a batch of points so as to optimize the value of the objective
(e.g. minimize the variance of the future learner or maximize the log likelihood of the future learner
with respect to the training set). However, most of the BMAL approaches that have been proposed
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in literature are based on heuristic scores. Brinker [7] proposed a BMAL scheme which selected a
highly diverse batch of points, where diversity was measured by the angle induced by the hyperplane
of the selected point with all the other hyperplanes of the already selected points. Hoi et al. [8] used
the Fischer information matrix as a measure of model uncertainty and proposed to select a batch of
points which reduced the Fischer information of the classification model. The same authors applied
the BMAL scheme to the problems of content based image retrieval (CBIR) [9] [10] and medical
image classification [11]. Guo and Schuurmans [12] first formalized the problem by proposing
an optimization based solution to select the most appropriate batch of unlabeled points for active
learning.

In addition to the aforementioned examples of CBIR and medical image classification, BMAL al-
gorithms are also highly relevant for applications involving video data. Modern video cameras have
a high frame rate and consequently, the captured data has high redundancy. Selecting the promising
instances from this superfluous set is a significant and valuable challenge. Due to its wide usage,
we focus on face based biometric recognition systems as the exemplar application in this paper
and explain the framework. Although validated only on biometric data in this work, the proposed
framework is generic and can be used in any application where it is required to select a number of
representative entities from repetitious samples.

All existing BMAL strategies require the batch size (the number of data points to be selected from
an unlabeled set) to be specified in advance. In an application like face based biometric recogni-
tion, deciding on a batch size in advance and without any knowledge of the unlabeled video being
analyzed, is impractical. The batch size should rather depend on the quality and variability of the
data in the unlabeled video and also on the level of confidence of the current classifier on the images
in the unlabeled stream. Similarly, the choice of the unlabeled data points for manual annotation
requires careful specification of an objective function that is suitable for a given application. In this
paper, we propose a novel optimization framework to simultaneously address two specific issues -
(i) adaptively choose the batch size for a given set of unlabeled points and (ii) design an appropriate
objective function that selects unlabeled data points that maximize the performance of the updated
classifier, also ensuring that data points from low-density regions are selected. While we have de-
signed an objective function for a video-based biometrics application, this function can be suitably
tailored to the needs of other applications. Our work is motivated by the method proposed by Guo
and Schuurmans [12], which however has a different objective and is restricted to static scenarios
where the batch size is user specified. With the same computational complexity as [12], we solve
for both the batch size as well as the specific points to be selected for annotation for this problem.

2 Problem Formulation
2.1 Batch Mode Active Learning for Biometrics

Consider a biometric recognition application where a video stream needs to be analyzed and a batch
mode active learning algorithm has to be applied to select a batch of images to update the underlying
classification model. Taking into account the specific challenges of face-based biometric data, an
intuitive strategy for batch selection is to ensure that different kinds of facial appearances in a video
stream are well-represented in a selected batch. This condition can be satisfied by a term which
asserts that the uncertainty (entropy) of the classifier in classifying the remaining images in the
video stream is minimized.

From a data geometry point of view, it is possible that the above term will only ensure that images
from high-density regions are selected in the batch. This is because the set of images that are not
selected may be dominated by images from such high-density regions constituting a large portion
of the data. To address this issue, we introduce a term which selects images specifically from low-
density regions in the data space, i.e. images that have a high distance from the remaining set.

Formally, let us consider a BMAL problem which has a current labeled set Lt and a current classifier
wt trained on Lt. The classifier is exposed to an unlabeled video Ut at time t. The objective is to
select a batch B from the unlabeled stream in such a way that the classifier wt+1, at time t + 1,
trained on Lt ∪ B has maximum generalization capability. Let C denote the possible number of
classes. Then, the entropy S of the conditional distribution P (y | xj , w

t+1), where xj is the jth

image in the unlabeled video and y is a class label, is calculated as

S(y|xj , w
t+1) = −

∑
y∈C

P (y|xj , w
t+1) logP (y|xj , w

t+1)
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Also, let ρj denote the average Euclidean distance of an unlabeled image xj from other images in
the video Ut. Greater values of ρj denote that the point is located in a low-density region.

The conditions described previously can thus be satisfied by defining a performance score function
f(B) in the following manner:

f(B) =
∑
j∈B

ρj − λ1

∑
j∈Ut−B

S(y|xj , w
t+1) (1)

The first term denotes the sum of the average distance of each selected point from other points in the
unlabeled video while the second term quantifies the sum of the entropies of each remaining point
in the unlabeled stream. λ1 is a tradeoff parameter.

The problem therefore reduces to selecting a batch B of unlabeled images which produces the max-
imum score f (B). Let the batch size (number of images to be selected for annotation) be denoted by
m, which is an unknown. Since there is no restriction on the batch size m, the obvious solution to
this problem is to select all the images in the unlabeled video. In that case, no image will be left be-
hind in the unlabeled video, the entropy term will become 0 and the density term will be equal to the
sum of the average distances of every image from all other images and consequently, f (B) will attain
its maximum score. However, querying all the images for their class labels is not an elegant solution
and defeats the basic purpose of active learning. To prevent this, we modify the score function by
enforcing a penalty on the batch size as follows:

f̃(B) =
∑
j∈B

ρj − λ1

∑
j∈Ut−B

S(y|xj , w
t+1)− λ2m (2)

The third term essentially reflects the cost associated with labeling the images, as the value of the
objective function decreases with every single image that needs to be labeled. The extent of labeling
penalty can be controlled through the weighting parameter λ2. Defining the score function in this
way ensures that any and every image is not queried for its class label. Only images for which the
density and entropy terms outweigh the labeling cost term get selected.

We therefore need to select a batchB of unlabeled images so as to maximize f̃(B). Since the search
space is exponentially large, exhaustive search methods are not feasible. The batch selection task
is therefore solved using numerical optimization techniques. Let |Ut| be the number of images in
the unlabeled video stream. We define a binary vector M of size |Ut| where each entry Mi denotes
whether the unlabeled image xi will be selected in the current batch or not. Thus, if we want to
convey the fact that image j in the video will be selected in the current batch, then Mj will be 1,
otherwise Mj will be 0. We rewrite the objective function in Equation 2 into an equivalent function
in terms of the defined vector M :

max
M,m

∑
j∈Ut

ρjMj − λ1

∑
j∈Ut

(1−Mj)S(y|xj , w
t+1)− λ2m (3)

subject to the constraint:
Mj ∈ [0, 1] (4)

To simplify the above objective function defined in terms of two variables (the vector M and the
scalar m), we try to express m in terms of the other variable M . By the formulation, if an entry
of M is 1, the corresponding image will be selected for annotation and if it is 0, the corresponding
image will not be selected. The number of images to be selected, is therefore equal to the number
of non-zero entries in the vector M , or the zero-norm of the vector M . Hence,

m = ||M ||0 ≈ ||M ||1 =
∑

j

Mj (5)

Here, we have replaced the zero norm of M by its closest convex approximation, which is the one-
norm of M . Also, from constraint 4, the one norm is simply the sum of the elements of the vector
M . Substituting m in terms of M , the new optimization problem becomes:

max
M

∑
j∈Ut

ρjMj − λ1

∑
j∈Ut

(1−Mj)S(y|xj , w
t+1)− λ2

∑
j

Mj

subject to the constraint: Mj ∈ [0, 1]

The above optimization is an integer programming problem and is NP hard. We therefore relax the
constraint to make it a continuous optimization problem:

max
M

∑
j∈Ut

ρjMj − λ1

∑
j∈Ut

(1−Mj)S(y|xj , w
t+1)− λ2

∑
j

Mj (6)
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subject to the constraint: 0 ≤Mj ≤ 1

2.2 Solving the Optimization Problem

We first write the objective function f(M) as:

f(M) =
∑
j∈Ut

ρjMj − λ1

∑
j∈Ut

(1−Mj)S(y|xj , w
t+1)− λ2

∑
j

Mj (7)

To solve the optimization problem, we use the Quasi Newton method, which assumes that the func-
tion can be well-approximated as a quadratic in the neighborhood of the optimum point and iter-
atively updates the variable M to guide the functional value towards this local optima. The first
derivative of the function and the Hessian matrix of second derivatives need to be computed as parts
of the solution procedure. Assuming wt+1 remains constant with small iterative updates of M , the
first order derivative vector is obtained by taking the partial of the objective with respect to M :

∇f(Mj) = ρj + λ1S(y|xj , w
t+1)− λ2

The Hessian starts as an identity matrix and is updated according to the BFGS method. In each
iteration, a quadratic programming problem is solved which yields an update direction for M . The
step size is obtained using a backtrack line search method based on the Armijo Goldstein equation
[13]. The iterations are continued until the change in the value of the objective function is negligible.
The final value of M is used to govern the number of points and the specific points to be selected for
the given data stream (by greedily setting the top m entries in M as 1 to recover the integer solution,
where m =

∑
j Mj). Hence, solving a single optimization problem helps in dynamically deciding

the batch size as well as selecting the specific points for manual annotation.

It is to be noted that the objective function is defined in terms of the future classifier wt+1, which
is unknown. In the Quasi Newton iterations, wt+1 is approximated as the classifier trained on the
current training set Lt together with the set of unlabeled points selected in the current iteration,
where the label of each selected unlabeled point is assumed to be the same as that of the closest
training point in Lt.

2.3 Extensions of the framework

It is straightforward to extend this formulation for dynamic batch selection to situations where mul-
tiple sources of information are available. For this, the objective function can be modified by ap-
pending relevant terms from the respective sources, together with a penalty on the batch size:

f(M) =
∑

j∈Ut1

ρjMj + λ1

∑
j∈Ut2

ρjMj − λ2

∑
j∈Ut1

(1−Mj)S(y|xj , w
t+1)

−λ3

∑
j∈Ut2

(1−Mj)S(y|xj , w
t+1)− λ4

∑
j

Mj

Moreover, if contextual information is available (eg location of a subject, whether at home or in of-
fice), it can be used to construct a prior probability vector depicting the chances of seeing particular
acquaintances in a given context. The entropy term can then be computed on the posterior probabil-
ities obtained by multiplying the likelihood values returned by the classifier with the context aware
prior. Thus, subjects not expected in a given context (eg. a home acquaintance in an office setting)
will have low priors and consequently, the corresponding posteriors will not contribute much in the
entropy calculation. The framework can therefore be extended to perform context-aware adaptive
batch selection.

3 Experiments and Results
3.1 Datasets and Feature Extraction

To demonstrate the effectiveness of the framework on biometric video data, we used the VidTIMIT
and the MBGC (Multiple Biometric Grand Challenge) datasets in our work. The VidTIMIT dataset
contains video recordings of subjects under natural conditions. The MBGC is the leading dataset for
biometric recognition collected by the National Institute of Standards and Technology (NIST) and
contains video recordings of subjects under uncontrolled indoor and outdoor lighting. 25 subjects
were randomly chosen from each dataset for our experiments. Our preliminary experiments (not
presented here due to lack of space) confirmed that the Discrete Cosine Transform (DCT) feature
could effectively distinguish the different subjects and hence this was used in our work.We carried
out two experiments to demonstrate the effectiveness of our framework - the first was performed
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to study the usefulness of dynamic batch size selection and the second was conducted to show the
superiority of the proposed approach in selecting unlabeled data points as compared to heuristic
BMAL techniques.

3.2 Experiment 1

The 25 subjects in each dataset were randomly divided into 2 groups - a “known” group containing
20 subjects and an “unknown” group containing the remaining 5 subjects. The learner was trained
with 1 video of each of the “known” subjects. Unlabeled video streams were then presented to the
active learner and it was asked to query images based on the proposed framework. The percentage
of unknown subjects in the unlabeled video stream was gradually increased from 0% to 100% in
steps of 20%. However, the learner was not given any information about the composition of each
unlabeled stream. Each unlabeled video had 100 images in total to facilitate fair comparison. The

(a) Dynamic Batch Size Selection on the Vid-
TIMIT dataset

(b) Dynamic Batch Size Selection on the MBGC
dataset

Figure 1: Optimization based dynamic batch size selection on the VidTIMIT and MBGC datasets.

results on the VidTIMIT and the MBGC datasets are shown in Figure 1 (λ1 and λ2 were both
empirically set to 1 in this experiment). The x axis depicts the percentage of unknown subjects in
the video stream and the y axis represents the batch size as decided by the active learner. Also,
each bar represents the average performance over 10 trials with different images of the known and
unknown subjects to rule out the effects of randomness. It is noted that, in both the datasets, as
the proportions of unknown subjects in the supplied video increases, the learner decides on a larger
batch size. This matches our intuition because, with growing proportion of unknown subjects, the
confidence of the learner on the video stream decreases and so it needs to query a larger number of
images to achieve good generalization capability. Hence, the framework enables the active learner to
automatically and adaptively choose the batch size based on its level of uncertainty on the images of
a given video stream. This corroborates the effectiveness of the optimization framework in dynamic
batch selection. Similar results were obtained (not reproduced here for the sake of brevity) when
the unlabeled video contained images of subjects with varying poses and expressions as compared
to the training set.

3.3 Experiment 2

In this experiment, a classifier was induced with 1 training video of each of the 25 subjects. 100
unlabeled video streams were then presented to the classifier one after another. The images in the
video streams were randomly chosen from all 25 subjects and did not have any particular proportion
of subjects in them. This was done to emphasize the performance of the framework under general
conditions. For each stream, the batch size was dynamically selected and optimization based BMAL
was used to select a batch of images. The selected images were appended to the training set, the
classifier updated and then tested on a test video containing 4500 images spanning all the 25 subjects.
The objective was to study the growth in accuracy on the same test video with increasing size of the
training set.

The proposed optimization based approach was compared with three other BMAL schemes - (i)
Random Sampling (ii) SVM Active Learning with Angular Diversity, where a batch of points was
incrementally sampled such that at each step the hyperplane induced by the selected point maximizes
the angle with all the hyperplanes of the already selected points, as proposed by Brinker [7] and
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(iii) Uncertainty Based Ranked Selection, where the top k uncertain points were queried from the
unlabeled video, k being the batch size.

For each video stream, the dynamically computed batch size was noted and used for the correspond-
ing unlabeled video in each of the heuristic techniques, for fair comparison. The results are shown
in Figure 2. As the x axis of the graphs indicate, with every new unlabeled video stream that en-
ters the system, the performance of the classifier improves over time. It is noted that the proposed
optimization based framework performs much better than the other methods as its accuracy on the
test set grows at the fastest rate. The label complexity (the number of labeled examples needed to
achieve a certain accuracy) is least in case of the proposed technique. This corroborates the supe-
riority of the framework over other similar techniques, under general conditions which reflect real
world scenarios.

(a) BMAL on the VidTIMIT dataset (b) BMAL on the MBGC dataset

Figure 2: Performance of different BMAL strategies on the VidTIMIT and MBGC datasets.

4 Conclusion
In this paper, we introduced a novel optimization based framework to dynamically select the batch
size in batch mode active learning applications. Using a penalty term on the batch size in the ob-
jective function, our framework can simultaneously solve for the batch size as well as the specific
points to be selected. The computational complexity of our method is the same as the best perform-
ing static BMAL algorithm [12] where the batch size needs to be specified in advance. The results
certify the potential of this approach in being used in any BMAL problem.
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