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Abstract

Selection of multiple SVM model hyperparameters by cross-validation can be ex-
pressed as a bilevel optimization problem.Explicit methods optimize the model
parameters and hyperparameters simultaneously. Inimplicit methods, the model
parameters are considered to be implicit functions of the hyperparameters. Re-
cently, gradient-based methods have emerged as an efficientway to optimize the
hyperparameters. In this work, we examine both implicit andexplicit model selec-
tion algorithms for linear SVM-type machine learning models expressed as non-
smooth unconstrained optimization problems. A key point isthat the underlying
optimization problems are nonsmooth and nonconvex, so set-valued subgradients
must be used. Nonsmooth nonconvex optimization techniquescan lead to scal-
able model selection algorithms but appropriate choice anduse of subgradients is
essential for good performance. A new nonconvex implicit bundle method is de-
veloped and compared computationally to recent nonsmooth implicit and explicit
gradient methods and grid search. All of the gradient methods out perform grid
search. The subgradients calculated using the simple implicit method may not
yield good directions, leading to algorithm failures. Smaller datasets can benefit
from the implicit bundle algorithms that have specialized strategies for calculating
effective subgradients. The well-foundedexplicit method consistently provides ro-
bust solutions for all size problems but at greater computational expense for larger
problems.

Selection of multiple SVM [18] model hyperparameters, suchas the trade-off parametersC and
tube-widthǫ in SVR, is important for achieving good generalization, butis an often overlooked issue.
A common approach is to use cross-validation (CV) coupled with grid search, but this becomes
unmanageable when there are more than 2 or 3 hyperparameters. We consider CV formulated as a
bilevel minimization problem to optimize the hyperparameters efficiently.

In this paper we will consider a generalized SVM problem withmodel parametersw and hyper-
parametersγ. We defineΓ to be a convex set of hyperparameters of interest and for simplicity of
presentation restrict the problem to a single training and validation set. The goal is to select model
parameters such that the model resulting from optimizing the training problemLtrn(w,γ) minimizes
the generalized validation functionLval(w,γ). This can be formulated as a bilevel problem [1]:

min
w,γ

Lval(w,γ)

s.t. γ ∈ Γ
w ∈ argmin

w

Ltrn(w,γ).
(1)

The bilevel optimization problem is nonsmooth and nonconvex in its entirety. The objectivesLval
andLtrn are presumed to be convex but not necessarily differentiable. We refer to algorithms that
simultaneously optimizew andγ of problem (1) asexplicit methods.
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Most current model selection algorithms [3, 5, 7, 8, 11, 15, 16, 19] do not address this bilevel op-
timization model directly. For instance,implicit methods do not optimize over the hyperparameters
and model parameters simultaneously. Rather implicit methods treatw as an implicit function of
the hyperparametersγ, written asw(γ). This changes the bilevel program into an implicit problem:

min
γ

Lval(w(γ),γ)

s.t. γ ∈ Γ
where w(γ) ∈ argmin

w

Ltrn(w,γ). (2)

This implicit problem is in general a nonconvex and nonsmooth problem. In this form it is easy to
see that grid search is an implicit method. The validation functionLval(w(γ),γ) is minimized by
“optimizing” over the possible hyperparameters. In grid search, optimization is done by discretizing
the hyperparameter variables, and then computing the function value at each point. Each function
value requires training of the modelLtrn(w,γ). “Optimization” is performed by choosing the best,
or lowest, validation error.

Several papers have shown that both implicit and explicit gradient-based methods can lead to much
more computationally efficient model selection algorithmsthan grid search [3, 4, 9, 10, 12]. Since
the function is not differentiable everywhere, we use the term gradient loosely to refer to subderiva-
tives or elements of the Clarke-subdifferential [14].

This paper examines model selection algorithms that treat the linear SVM training problem directly
as nonsmooth unconstrained minimization which contrasts with prior methods that uses the less
efficient smooth SVM formulation [2, 3, 4, 9, 10, 12]. First weexamine the simple nonsmooth
implicit gradient descent algorithm (ImpGrad) and a novel and more robust nonsmooth and non-
convex bundle algorithm (ImpBundle). A primal nonsmooth explicit method (PBP) that solves for
the hyperparameters and model hyperparameters simultaneously is then introduced. Computational
results show that appropriate choice and use of subgradients are key for the performance of the
algorithms for small problems. However, for massive problems, simplified approaches can create
models that generalize just as well while benefiting from faster computational performance.

1 Existing Dual Implicit Gradient Descent Algorithms

Dual implicit gradient descent methods [3, 9] optimize the hyperparameters in problem (2) using
gradient information calculated using the dual SVM versionof the training problem in (2). As-
suming the Representer Theorem applies, the standard SVM approach of smoothing the training
problem in (2) by adding nonnegative slack variables and then taking the dual produces a convex
linearly constrained problem in the dual variablesα with at least one variable per training point. For
simplicity of presentation, we denote the constraints of the dual problem asAα ≤ b whereA andb
are an appropriately defined matrix and vector, respectively, which may themselves be functions of
γ. The dual implicit problem becomes:

min
γ

Lval(w(γ),γ)

s.t. w(γ) = X ′
α(γ)

γ ∈ Γ

(3)

where
α(γ) ∈ argmin

α

Ldual
trn (α,γ)

s.t. Aα ≤ b.
(4)

Problem (4) is solved directly to findw using any appropriate SVM algorithm. Then a subgradient
is calculated using the Karush-Kuhn-Tucker (KKT) optimality conditions:

0 =
∂Ldual

trn (α,γ)
∂α

+A′σ (5)

Aα ≤ b (6)

σ ≥ 0 (7)

σ′(Aα− b) = 0, (8)

whereσ is the dual variable to the constraintsAα ≤ b.

For typical linear or quadratic SVM training problems, the first three constraints are linear. The
last constraint is a complementary constraint, it enforcesthat eitherAiα − bi = 0 or σi = 0 for
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each constrainti. In prior methods, this constraint is ignored under that assumption that the active
support vector set does not change at the current point. Thisassumption is typically false. Further,
the inactive inequalities are also ignored, as for a small enough step, they will remain inactive. This
reduces the KKT system to a linear system from which a gradient estimate can be readily computed
[3, 9]. However this may not be a good choice of subgradient since it represents one of many
possible choices and may not yield a descent direction or even a directional derivative.

Previously in [9] a standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm
with the above subgradient is used to optimize the hyperparameters. While this method isnot guar-
anteed to converge to a locally optimal solution for subdifferentiable problems, it can work quite
well in practice for large problems. For the case when the loss function is not twice differentiable,
the subgradient selected may not be valid, and thus may yielda poor search direction. Consequently
the algorithm may fail to make significant progress and exit at a non-locally optimal point. Further
the BFGS algorithm is not applicable without modification tononconvex functions, and thus this
can create additional computational errors. The method requires an optimal solution of the more
costly dual SVM problem. Linear scalability of primal SVM has been achieved by using subgra-
dient methods on the unconstrained nonsmooth primal SVM problem with no introduction of dual
variables [17], suggesting that primal nonsmooth methods for model selection may also be more
computationally effective.

2 Primal Implicit Methods ImpGrad and ImpBundle

Increased efficiency for primal SVM model selection can be achieved by working directly on the
unconstrained nonsmooth SVM training problem. We devised two approaches:ImpGrad that
directly generalizes the prior dual implicit approach to the primal case andImpBundle that uses a
more robust nonsmooth nonconvex bundle method.

These algorithms solve formulation (2) with the training problem as an unconstrained problem, thus
the training problem’s optimality condition is

0 ∈
∂Ltrn(w,γ)

∂w
. (9)

If Ltrn is nonsmooth, then it is a set-valued constraint. If we assume thatLtrn(w,γ) is once dif-
ferentiable, like for ridge regression, least squares SVM and quadratically penalizedǫ-insensitive
regression, then the constraint becomes an equality constraint. This equation is analogous to the
KKT system used in the dual implicit methods. Using this constraint, the subgradient ofLval with
respect toγ can be computed, but it may not be unique. TheImpGrad algorithm selects an arbi-
trary subgradient to act as a gradient, and then proceeds similarly to the previous implicit method
with a BFGS algorithm.ImpGrad similarly assumes that the problem is smooth and convex, of
which it is neither.

The more advancedImpBundle algorithm doesnot assume that the problem is smooth or con-
vex. It does not use a BFGS algorithm, rather it uses a nonconvex, nonsmooth bundle algorithm
to optimize the hyperparameters subject to linear constraints. Much like convex bundle algorithms,
ImpBundle builds up a piecewise linear approximation of the implicit function using subgradients
that are locally valid about the stability center. The approximation is improved until a better solution
is found and then the stability center is updated. To deal with nonconvexity, the subgradients can be
used as lower or upper approximations of the implicit function as appropriate such as in [6].

In a novel strategy designed for fast performance,ImpBundle selects subgradients that correspond
to directional derivatives.ImpBundle uses the nonconvex nonsmooth bundle method in [6] except
that the bundle isretroactively revised. Specifically, if a sufficient decrease is not obtained (i.e. a
null step is found), the subgradient of the stability centeris revised to correspond to the directional
derivative corresponding to the last search direction. This subgradient is computationally efficient,
but weaker than the directional derivative found in [13]. Revising the subgradient to be a directional
derivative improves the accuracy of the piecewise linear approximation in the direction of interest,
accelerating convergence.

Note that all existing implicit algorithms require training the SVM problem to optimality at each
iteration for each function/gradient calculation of the algorithm. Intuitively, explicit methods for
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solving for the hyperparameters and model parameters simultaneously have the potential of being
more effective.

3 Primal Explicit Method: PBP

In contrast with the implicit methods, explicit methods solve problem (1) directly for both the model
parameters and hyperparameters. We focus on the penalized bilevel programming (PBP) [12] ap-
proach, which further assumes the training objectiveLtrn is once differentiable such as in least
squares SVM. This method replaces the primal unconstrainedtraining problem by its optimality
condition:

min
w,γ

Lval(w,γ)

s.t. 0 = ∂Ltrn(w,γ)
∂w

γ ∈ Γ.
(10)

The new equality constraint is nonsmooth and nonconvex. This constraint is difficult to deal with,
so it is penalized into the objective with penalty parameterβ:

min
w,γ

Lval(w,γ) + β‖∂Ltrn(w,γ)
∂w

‖2

s.t. γ ∈ Γ.
(11)

This new problem is nonconvex and nonsmooth. To solve it, a locally accurate quadratic approxi-
mation function is created about a stability center. The approximation function is then minimized,
and the stability center and approximation updated. This approximation is constructed such that
the greatest feasible descent direction is chosen. This advanced search ensures that the algorithm
optimizes the function efficiently and also determines if the necessary conditions for optimality are
satisfied (no descent possible). The reader should consult [12] for full details of thePBP algorithm
and its convergence to a point satisfying necessary optimality criteria.

4 Results

PBP,ImpGrad andImpBundle algorithms are compared against grid search using a pair of quan-
titative structure activity relationship (QSAR) datasetsarising in drug design. This regression task
is to predict a measure of the bioactivity of molecules, based on computed molecular descriptors. A
full description of the experimental design appears in [12]. There are two datasets: pyruvate kinase
and tau-fibril. Model selection was performed on dataset sizes ranging from 100 points to 1,0000
molecules.

The learning task chosen is multiSVR modeling with 10 hyperparameters [12]. This is a generalized
version ofǫ-insensitive regression where each dataset is split into 5 evenly-sized groups according to
sample quality. MultiSVR builds regression models with theflexibility of different hyperparameter
values for each group. Hence, the multiSVR problem involves10 hyperparameters. Computing a
normal fine grid search with 10 hyperparameters for many possible values per hyperparameter is far
beyond our computational powers. Therefore, we have restricted grid search to acoarse grid search,
where for each of the hyperparameters, only two possible values are used.

Figure 1 presents generalization results for both datasets. Note thatPBP find the smallest generaliza-
tion error for all model sizes (or is essentially tied). Further, as the sample size increases,ImpGrad
andImpBundle improve their generalization error with respect toPBP to attain a negligible dif-
ference on the larger datasets. Similarly,ImpGrad andImpBundle perform very comparably on
all runs except the 200 data point tau-fibril dataset. LikelyImpGrad was “stuck” here. Finally,
Grid search returned the worst generalization errors. Thiswas expected as it is limited to a discrete
sampling of hyperparameter combinations; the other algorithms are not so constrained.

We seek to develop algorithms that scale linearly with sample size. Figure 2A assesses the empirical
scalability of the algorithms presented in this paper. Coarse grid search uses more computational
time than the other algorithms at 100 modeling points, and then its computational time begins to
grow as expected after 1,000 points.ImpGrad, ImpBundle andPBP scale modesty.PBP is con-
sistent, but grows at a higher rate thanImpGrad andImpBundle. For larger datasetsImpGrad
was the fastest, followed closely byImpBundle. This suggests a hybrid approach may be appli-
cable. Small datasets would benefit from better generalization error usingPBP and large datasets
would benefit from the speed ofImpBundle.
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Figure 1: Generalization results for the (A) pyruvate kinase and (B) tau-fibril dataset using multiSVR
with 5-groups. The plots show that the coarse grid does poorly andPBP does the best. Notice that
PBP, ImpGrad andImpBundle converge for the large datasets, but for smaller tau-fibril datasets
ImpGrad is less reliable.
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Figure 2: Scalability in the (A) sample and (B) hyperparameter sizes for grid search,ImpGrad,
ImpBundle andPBP with 10 hyperparameters for the tau-fibril dataset as measured by CPU time.
Note the coarse grid is only selecting over two choices per hyperparameters; a full grid search is
impractical.

Figure 2B addresses the algorithms hyperparameter scalability using the tau-fibril1, 000 molecule
datasets. The plot shows that as the number of hyperparameters (groups) are increased from two hy-
perparameters (one group) to 10 hyperparameters (five groups), the computation time grows slowly
in the hyperparameter size. Grid search CPU time grows exponentially and is omitted.

5 Conclusions

This paper provides an insight into selecting model hyperparameters using the bilevel optimization
framework. Both implicit and explicit gradient methods have been developed that work directly on
the primal nonsmooth training objectives versus prior methods that used smoothed SVM formula-
tions. Appropriate choice and use of subgradients is key forrobust performance in both implicit and
explicit algorithms. The simpleImpGrad descent algorithm can fail for smaller problems. By in-
corporating directional derivatives within a nonsmooth nonconvex bundle framework,ImpBundle
improves generalization with no increase in computationalcost. A deeper theoretical investigation
may lead to further improvements in ImpBundle. The theoretically well-founded explicitPBP al-
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gorithm achieves the best generalization overall but at greater computational costs. The implicit
strategy automatically decomposes the problem into separate problems for each CV fold, while the
explicitPBP algorithm solves for all CV folds simultaneously. A decomposition approach based on
the CV folds should significantly speed up the explicit algorithm and make it more comparable to
the implicit methods in terms of efficiency. For the very large problems there is no real difference in
the generalization of the approaches, suggesting cheaper and simple optimization algorithms with-
out accurate subgradient calculations can be quite effective given sufficient data. The results suggest
that model selection using bilevel gradient methods is preferable over grid search for problems with
many hyperparameters.
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