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Abstract

Selection of multiple SVM model hyperparameters by craggdation can be ex-
pressed as a bilevel optimization probleExplicit methods optimize the model
parameters and hyperparameters simultaneouslynphcit methods, the model
parameters are considered to be implicit functions of theehyarameters. Re-
cently, gradient-based methods have emerged as an efficégnio optimize the
hyperparameters. In this work, we examine both implicitexplicit model selec-
tion algorithms for linear SVM-type machine learning madexpressed as non-
smooth unconstrained optimization problems. A key poinhé the underlying
optimization problems are nonsmooth and nonconvex, seadeed subgradients
must be used. Nonsmooth nonconvex optimization techniqaedead to scal-
able model selection algorithms but appropriate choiceusedof subgradients is
essential for good performance. A new nonconvex implicitdda method is de-
veloped and compared computationally to recent nonsmagthidit and explicit
gradient methods and grid search. All of the gradient mettmd perform grid
search. The subgradients calculated using the simpledinptiethod may not
yield good directions, leading to algorithm failures. Skeatlatasets can benefit
from the implicit bundle algorithms that have specializedtegies for calculating
effective subgradients. The well-foundeqgblicit method consistently provides ro-
bust solutions for all size problems but at greater compurtat expense for larger
problems.

Selection of multiple SVM [18] model hyperparameters, sashthe trade-off paramete¢s and
tube-widthe in SVR, is important for achieving good generalization,ib@n often overlooked issue.
A common approach is to use cross-validation (CV) coupleth giid search, but this becomes
unmanageable when there are more than 2 or 3 hyperparam&teronsider CV formulated as a
bilevel minimization problem to optimize the hyperparaenstefficiently.

In this paper we will consider a generalized SVM problem withdel parameters: and hyper-
parametersy. We definel’ to be a convex set of hyperparameters of interest and forlisitypof
presentation restrict the problem to a single training aad@tiation set. The goal is to select model
parameters such that the model resulting from optimiziedriining problenty(w, v) minimizes
the generalized validation functiafya(w, «v). This can be formulated as a bilevel problem [1]:

Igvli’ryl Lyal(W, )
s.t. ~el (1)
w € argmin  Lyn(w, 7).
w
The bilevel optimization problem is nonsmooth and noncarnmdts entirety. The objectives,q

and Ly, are presumed to be convex but not necessarily differeetidlile refer to algorithms that
simultaneously optimizer and~ of problem (1) agxplicit methods.



Most current model selection algorithms [3, 5, 7, 8, 11, 1%,19] do not address this bilevel op-
timization model directly. For instancayplicit methods do not optimize over the hyperparameters
and model parameters simultaneously. Rather implicit ogthreatw as an implicit function of
the hyperparameters written asw(+y). This changes the bilevel program into an implicit problem:

min Lyva(w(y),)

where w(vy) € argmin  Lin(w, ). (2)
st. ~el W

This implicit problem is in general a nonconvex and nonstgubblem. In this form it is easy to
see that grid search is an implicit method. The validatiarcfion Ly (w (), ) is minimized by
“optimizing” over the possible hyperparameters. In gridrst, optimization is done by discretizing
the hyperparameter variables, and then computing theiimealue at each point. Each function
value requires training of the modél.,(w, ). “Optimization” is performed by choosing the best,
or lowest, validation error.

Several papers have shown that both implicit and expligitligmt-based methods can lead to much
more computationally efficient model selection algorithimsn grid search [3, 4, 9, 10, 12]. Since
the function is not differentiable everywhere, we use thtgradient loosely to refer to subderiva-
tives or elements of the Clarke-subdifferential [14].

This paper examines model selection algorithms that theslirear SVM training problem directly
as nonsmooth unconstrained minimization which contradis prior methods that uses the less
efficient smooth SVM formulation [2, 3, 4, 9, 10, 12]. First wgamine the simple nonsmooth
implicit gradient descent algorithnh fpGr ad) and a novel and more robust nonsmooth and non-
convex bundle algorithm @mpBundl €). A primal nonsmooth explicit methodBP) that solves for
the hyperparameters and model hyperparameters simultsiyas then introduced. Computational
results show that appropriate choice and use of subgradéatkey for the performance of the
algorithms for small problems. However, for massive protdesimplified approaches can create
models that generalize just as well while benefiting fromteiasomputational performance.

1 Existing Dual Implicit Gradient Descent Algorithms

Dual implicit gradient descent methods [3, 9] optimize tlypdrparameters in problem (2) using
gradient information calculated using the dual SVM versidrihe training problem in (2). As-
suming the Representer Theorem applies, the standard Skbagh of smoothing the training
problem in (2) by adding nonnegative slack variables and thking the dual produces a convex
linearly constrained problem in the dual variabtewith at least one variable per training point. For
simplicity of presentation, we denote the constraints efdbal problem agla < b whereA andb
are an appropriately defined matrix and vector, respegtivdlich may themselves be functions of
~. The dual implicit problem becomes:

min - Lya(wW(7y),7)
st. w(y) =X'aly) 3)
vyel
where . sual
a(y) € argmin L (o, ) 4
s.t. Aa < b.

Problem (4) is solved directly to fingr using any appropriate SVM algorithm. Then a subgradient
is calculated using the Karush-Kuhn-Tucker (KKT) optirhationditions:

dual @
0— Bﬁnna((l Y) + Ao (5)
Aa <b (6)
>0 (7
o'(Aa —b) =0, (8)

whereo is the dual variable to the constraimsx < b.

For typical linear or quadratic SVM training problems, thestfithree constraints are linear. The
last constraint is a complementary constraint, it enfothas eitherd;a — b; = 0 or o; = 0 for



each constraint. In prior methods, this constraint is ignored under thatiaggion that the active
support vector set does not change at the current point.aBsismption is typically false. Further,
the inactive inequalities are also ignored, as for a smalugh step, they will remain inactive. This
reduces the KKT system to a linear system from which a graéigimate can be readily computed
[3, 9]. However this may not be a good choice of subgradiemtesit represents one of many
possible choices and may not yield a descent direction or awbrectional derivative.

Previously in [9] a standard Broyden-Fletcher-Goldfaiiasno (BFGS) quasi-Newton algorithm
with the above subgradient is used to optimize the hypenpaters. While this method it guar-
anteed to converge to a locally optimal solution for suledéhtiable problems, it can work quite
well in practice for large problems. For the case when the fosction is not twice differentiable,
the subgradient selected may not be valid, and thus maygietibr search direction. Consequently
the algorithm may fail to make significant progress and exé aon-locally optimal point. Further
the BFGS algorithm is not applicable without modificationmtmnconvex functions, and thus this
can create additional computational errors. The methodiregjan optimal solution of the more
costly dual SVM problem. Linear scalability of primal SVM $iaeen achieved by using subgra-
dient methods on the unconstrained nonsmooth primal SVMleno with no introduction of dual
variables [17], suggesting that primal nonsmooth methodsrfodel selection may also be more
computationally effective.

2 Primal Implicit Methods | npG-ad and | npBundl e

Increased efficiency for primal SVM model selection can biei@ed by working directly on the
unconstrained nonsmooth SVM training problem. We devisen dpproachesi npGr ad that
directly generalizes the prior dual implicit approach te grimal case andnpBundl e that uses a
more robust nonsmooth nonconvex bundle method.

These algorithms solve formulation (2) with the traininglglem as an unconstrained problem, thus
the training problem’s optimality condition is

0c aﬁtrn(“’v')’).

ow

If Lyn is nonsmooth, then it is a set-valued constraint. If we asstiatLyn(w,~) is once dif-
ferentiable, like for ridge regression, least squares S\ gquadratically penalizeéinsensitive
regression, then the constraint becomes an equality eamistiThis equation is analogous to the
KKT system used in the dual implicit methods. Using this ¢aist, the subgradient of,4 with
respect toy can be computed, but it may not be unique. TimpGr ad algorithm selects an arbi-
trary subgradient to act as a gradient, and then proceedsadjnto the previous implicit method
with a BFGS algorithm.l npGr ad similarly assumes that the problem is smooth and convex, of
which it is neither.

©)

The more advancednpBundl e algorithm doesot assume that the problem is smooth or con-
vex. It does not use a BFGS algorithm, rather it uses a nomspmonsmooth bundle algorithm
to optimize the hyperparameters subject to linear coméraMuch like convex bundle algorithms,

| mpBundl e builds up a piecewise linear approximation of the impliaitétion using subgradients
that are locally valid about the stability center. The appr@tion is improved until a better solution
is found and then the stability center is updated. To dedl mitnconvexity, the subgradients can be
used as lower or upper approximations of the implicit fumcths appropriate such as in [6].

In a novel strategy designed for fast performahegBundl e selects subgradients that correspond
to directional derivatived. npBundl e uses the nonconvex nonsmooth bundle method in [6] except
that the bundle isetroactively revised. Specifically, if a sufficient decrease is not oladi(i.e. a

null step is found), the subgradient of the stability ceigaevised to correspond to the directional
derivative corresponding to the last search directionsBabgradient is computationally efficient,
but weaker than the directional derivative found in [13]vRing the subgradient to be a directional
derivative improves the accuracy of the piecewise linegragmation in the direction of interest,
accelerating convergence.

Note that all existing implicit algorithms require traigithe SVM problem to optimality at each
iteration for each function/gradient calculation of thgaithm. Intuitively, explicit methods for



solving for the hyperparameters and model parameters tsimaedusly have the potential of being
more effective.

3 Primal Explicit Method: PBP

In contrast with the implicit methods, explicit methodsv&oproblem (1) directly for both the model
parameters and hyperparameters. We focus on the penalleedl programming (PBP) [12] ap-
proach, which further assumes the training objectiyg is once differentiable such as in least
squares SVM. This method replaces the primal unconstranaguing problem by its optimality
condition:

min - Lyai(W, )
st 0=2fmwy) 4 e,

The new equality constraint is nonsmooth and nonconvexs @timstraint is difficult to deal with,
so it is penalized into the objective with penalty paramgter

(10)

min - Lua(w,y) + B 20l |2

11
st. yel. )

This new problem is nonconvex and nonsmooth. To solve itcallp accurate quadratic approxi-
mation function is created about a stability center. The@ygmation function is then minimized,
and the stability center and approximation updated. Th@pmation is constructed such that
the greatest feasible descent direction is chosen. Thisnaed search ensures that the algorithm
optimizes the function efficiently and also determines & tlecessary conditions for optimality are
satisfied (no descent possible). The reader should cordgyjlfdr full details of thePBP algorithm
and its convergence to a point satisfying necessary optintaiteria.

4 Results

PBP, | npGr ad andl npBundl e algorithms are compared against grid search using a pairaf-q
titative structure activity relationship (QSAR) datasetsing in drug design. This regression task
is to predict a measure of the bioactivity of molecules, dasecomputed molecular descriptors. A
full description of the experimental design appears in [T2jere are two datasets: pyruvate kinase
and tau-fibril. Model selection was performed on datasetssianging from 100 points to 1,0000
molecules.

The learning task chosen is multiSVR modeling with 10 hypeameters [12]. This is a generalized
version ofe-insensitive regression where each dataset is split int@blg-sized groups according to
sample quality. MultiSVR builds regression models with fllegibility of different hyperparameter
values for each group. Hence, the multiSVR problem involM@$yperparameters. Computing a
normal fine grid search with 10 hyperparameters for manyiblesgalues per hyperparameter is far
beyond our computational powers. Therefore, we have cgstigrid search toeoarse grid search,
where for each of the hyperparameters, only two possibleegahre used.

Figure 1 presents generalization results for both dataSets thatPBP find the smallest generaliza-
tion error for all model sizes (or is essentially tied). fert as the sample size increasesp G ad
andl npBundl e improve their generalization error with respectBP to attain a negligible dif-
ference on the larger datasets. SimilarlgpG- ad andl npBundl! e perform very comparably on
all runs except the 200 data point tau-fibril dataset. LiketgpGr ad was “stuck” here. Finally,
Grid search returned the worst generalization errors. Wais expected as it is limited to a discrete
sampling of hyperparameter combinations; the other alyms are not so constrained.

We seek to develop algorithms that scale linearly with sarsjzle. Figure 2A assesses the empirical
scalability of the algorithms presented in this paper. Gearid search uses more computational
time than the other algorithms at 100 modeling points, ama its computational time begins to
grow as expected after 1,000 pointsrpG- ad, | npBundl e andPBP scale modestyPBP is con-
sistent, but grows at a higher rate tHampGr ad andl npBundl e. For larger datasetsnpGr ad
was the fastest, followed closely byrpBundl e. This suggests a hybrid approach may be appli-
cable. Small datasets would benefit from better generadizatrror using®BP and large datasets
would benefit from the speed bfipBundl e.
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Figure 1. Generalization results for the (A) pyruvate kanasd (B) tau-fibril dataset using multiSVR
with 5-groups. The plots show that the coarse grid does p@ord PBP does the best. Notice that
PBP, | pGr ad andl npBundl e converge for the large datasets, but for smaller tau-filatihgets

| mpGr ad is less reliable.
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Figure 2: Scalability in the (A) sample and (B) hyperparamnsizes for grid search,npGr ad,

| mpBundl e andPBP with 10 hyperparameters for the tau-fibril dataset as measoy CPU time.
Note the coarse grid is only selecting over two choices peehyarameters; a full grid search is
impractical.

Figure 2B addresses the algorithms hyperparameter slifgiaising the tau-fibrill, 000 molecule
datasets. The plot shows that as the number of hyperpananigteups) are increased from two hy-
perparameters (one group) to 10 hyperparameters (five gyaiye computation time grows slowly
in the hyperparameter size. Grid search CPU time grows esq@ily and is omitted.

5 Conclusions

This paper provides an insight into selecting model hypenpaters using the bilevel optimization
framework. Both implicit and explicit gradient methods bdeen developed that work directly on
the primal nonsmooth training objectives versus prior rmdshthat used smoothed SVM formula-
tions. Appropriate choice and use of subgradients is kegotaust performance in both implicit and
explicit algorithms. The simplenpGr ad descent algorithm can fail for smaller problems. By in-
corporating directional derivatives within a nonsmoothoanvex bundle frameworknpBundl e
improves generalization with no increase in computaticoat. A deeper theoretical investigation
may lead to further improvements in ImpBundle. The theoadiy well-founded explicitPBP al-



gorithm achieves the best generalization overall but aatgrecomputational costs. The implicit
strategy automatically decomposes the problem into sepprablems for each CV fold, while the
explicit PBP algorithm solves for all CV folds simultaneously. A decorsjiion approach based on
the CV folds should significantly speed up the explicit aition and make it more comparable to
the implicit methods in terms of efficiency. For the very gyoblems there is no real difference in
the generalization of the approaches, suggesting cheageaimple optimization algorithms with-
out accurate subgradient calculations can be quite eftegiven sufficient data. The results suggest
that model selection using bilevel gradient methods isgueddle over grid search for problems with
many hyperparameters.
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