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Abstract

We study the convergence of a class of stable online algorithms for stochas-
tic convex optimization in settings where we do not receive independent
samples from the distribution over which we optimize, but instead receive
samples that are coupled over time. We show the optimization error of the
averaged predictor output by any stable online learning algorithm is upper
bounded—with high probability—by the average regret of the algorithm, so
long as the underlying stochastic process is β- or φ-mixing. We additionally
show sharper convergence rates when the expected loss is strongly convex,
which includes as special cases linear prediction problems including linear
and logistic regression, least-squares SVM, and boosting.

1 Introduction

In this paper, we study the performance of online algorithms for solving stochastic opti-
mization problems where data comes from a non-i.i.d. process. Formally, let {F (·; ξ), ξ ∈ Ξ}
be a collection of convex functions whose domains contain the closed convex set X ⊆ Rd
and Π be a probability distribution over the sample space Ξ. Define the convex function
f : X → R by

f(x) := EΠ[F (x; ξ)] =

∫
Ξ

F (x; ξ)dΠ(ξ); (1)

we study online algorithms for solving the following convex optimization problem:

minimize
x

f(x) subject to x ∈ X . (2)

Duchi et al. [5] study mirror descent algorithms for solving the problem (2), noting that
while an extensive literature on stochastic gradient descent strategies exists (e.g. [14, 13, 12]),
many approaches assume that it is possible to obtain independent and identically distributed
samples from the distribution Π. When this assumption is violated—such as when one solves
statistical machine learning problems with non-i.i.d. data [9, 11]—the performance of such
approaches is not as clear. On the other hand, online learning algorithms have the attractive
property that regret guarantees hold for arbitrary sequences of loss functions. That is, the
regret of the sequence of points x(1), . . . , x(T ) the algorithm plays measured against a fixed
predictor x∗, defined on the sequence ξ1, ξ2, . . . ⊆ Ξ as

RT :=

T∑
t=1

F (x(t); ξt)− F (x∗; ξt), (3)

is provably small for arbitrary sequences of training examples ξt without assuming any
statistical regularity of the sequence. In stochastic optimization and statistical learning
settings, however, it is the optimization error on the expected (or population) function f
defined by the expectation (1) that is of central interest.
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When data is drawn i.i.d. from an underlying probability distribution, Cesa-Bianchi et al. [3]
have shown that online learning algorithms can indeed output predictors that approximately
minimize the expected function f . Specifically, for convex loss functions, the average of the
T predictors played by the online algorithm has optimization error (nearly) bounded by
the average regret RT

T with high probability. We ask the same question when the data
ξt is drawn according to a dependent process. To that end, we show that online learning
algorithms enjoy high-probability convergence guarantees when the samples ξ1, ξ2, . . . form
a β- or φ-mixing sequence. In particular, we prove that stable online learning algorithms—
those that do not change the predictor x(t) too aggressively between iterations—converge
to the minimum of the population objective f . In favorable regimes of geometric mixing, we
demonstrate convergence rates of O(log T/

√
T ) after T iterations when the loss functions F

are convex and Lipschitz. We also demonstrate faster O(log T/T ) convergence when the loss
function is strongly convex in the hypothesis x, which is often the case for regularized prob-
lems such as SVMs, regularized logistic regression, , kernel ridge regression and maximum
entropy estimation. In addition, we consider linear prediction settings, and show O(log T/T )
convergence when a strongly convex loss is applied to a linear predictor 〈x, ·〉, which gives
fast rates for problems such as least squares SVMs, linear regression, logistic regression, and
boosting over bounded sets, when samples are not independent and identically distributed.

We build off of a recent paper by Duchi et al. [5], who show high probability bounds on the
convergence of the mirror descent algorithm even in dependent noise settings. In particular,
while their results only apply to mirror descent algorithm, here we show a broad family of
algorithms to optimize with non-i.i.d. data. We also extend their martingale techniques by
exploiting recent ideas of Kakade and Tewari [8], and use a weakened versions of β and φ-
mixing for our high probability results. Our proofs use only relatively elementary martingale
convergence arguments, and we do not require that the input data is stationary but only that
it is suitably convergent. More details and proofs can be found in the full-length version [1].

2 Setup, Assumptions and Notation

The online algorithm receives data ξ1, . . . , ξT from the sample space Ξ, where the data is
generated according to a stochastic process P . The algorithm plays points (hypotheses)
x ∈ X , and at iteration t suffers the loss F (x(t); ξt). The total variation distance between
distributions P and Q, with densities p and q w.r.t. a measure µ,1, defined on a space S is

dTV(P,Q) := sup
A⊂S
|P (A)−Q(A)| = 1

2

∫
S

|p(s)− q(s)|dµ(s). (4)

Define the σ-field Ft = σ(ξ1, . . . , ξt). Let P t[s] denote the distribution of ξt conditioned on Fs,
that is, given the initial samples ξ1, . . . , ξs. Our main assumption is that there is a stationary
distribution Π to which the distribution of ξt converges as t grows. We also assume that
the distributions P t[s] and Π are absolutely continuous with respect to a fixed underlying

measure µ throughout. We use the following criterion to measure the convergence of P :

Definition 2.1 (Weak β and φ-mixing). The β and φ-mixing coefficients of the sampling
distribution P are defined, respectively, as

β(k) := sup
t∈N

{
2E[dTV(P t+k(· | Ft),Π)]

}
and φ(k) := sup

t∈N

{
2dTV(P t+k(· | B),Π) : B ∈ Ft

}
.

The process is φ-mixing (respectively, β-mixing) if φ(k) → 0 as k → ∞, and we assume
without loss that β and φ are non-increasing. The above definition is weaker than the
standard definitions of mixing [11, 17], which require mixing over the entire tail σ-field of
the process; we require mixing over only the single-slice marginal of ξt+k. We also note that
β-mixing is weaker than φ-mixing since β ≤ φ. Two regimes of mixing are of special interest.
A process is called geometrically β-mixing if β(k) ≤ β0 exp(−β1k

θ) for some βi, θ > 0, and
similarly for φ. Stochastic processes satisfying geometric mixing include finite-state ergodic
Markov chains; we refer the reader to the reference [10] for more examples. A process is

1This assumption is without loss, since P and Q are absolutely continuous with respect to P+Q.
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algebraically β-mixing if β(k) ≤ β0k
−θ for some β0, θ > 0 (φ(k) ≤ φ0k

−θ). Algebraic mixing
holds for certain Metropolis-Hastings samplers when the proposal distribution does not have
a lower bounded density [7], some queuing systems, and other unbounded processes.

We make the following standard boundedness assumptions on F and the domain X :

Assumption A (Boundedness). For µ-a.e. ξ, the functions F (·; ξ) are convex and G-
Lipschitz with respect to a norm ‖·‖ over X , and X is compact with finite radius:

|F (x; ξ)− F (y; ξ)| ≤ G ‖x− y‖ and ‖x− y‖ ≤ R (5)

for all x, y ∈ X . Further, F (x; ξ) ∈ [0, GR].

Assumption A implies that the function f defined by the expectation (1) is G-Lipschitz. We
give somewhat stronger results in the presence of the following additional assumption.

Assumption B (Strong Convexity). The expected function f is σ-strongly convex with
respect to the norm ‖·‖, that is, for all g ∈ ∂f(x),

f(y) ≥ f(x) + 〈g, y − x〉+
σ

2
‖x− y‖2 for x, y ∈ X . (6)

To prove generalization error bounds for online learning algorithms, we require them to be
appropriately stable, as described in the next assumption.

Assumption C. There is a non-increasing sequence κ(t) such that if x(t) and x(t+ 1) are
successive iterates of the online algorithm, then ‖x(t)− x(t+ 1)‖ ≤ κ(t).

Here ‖·‖ is the same norm as that used in Assumption A. This assumption is different from
the stability condition of Mohri and Rostamizadeh [11], and neither implies the other. It is
common (or at least often straightforward) to bound κ(t) as a part of the regret analysis of
online algorithms (e.g. [16, Lemma 10]), which motivates our assumption here.

3 Main Results

Our goal is to use the sequence x(1), . . . , x(T ) to construct an estimator x̂T that has a small
optimization error f(x̂T )− f(x∗). In the setting where the samples ξt are independent and
identically distributed [3, 8], the average x̂T of the T predictors x(1), x(2), . . . , x(T ) the
online algorithm plays satisfies this condition. We state all our convergence results for the
same averaged predictor x̂T = [x(1) + · · ·+ x(T )]/T , and provide proofs of all our results in
the full length version of this paper [1].

3.1 Convergence rate for convex functions

We begin with a bound on the expected generalization error of x̂T for convex Lipschitz
losses; since we measure expectation, β-mixing is a sufficient condition for the result.

Theorem 1. Under Assumptions A and C, for any τ ∈ N the predictor x̂T satisfies

E[f(x̂T )]− f(x∗) ≤ 1

T
E[RT ] + β(τ)GR+

τG

T

(
R+

T∑
t=1

κ(t)

)
.

The above result holds only in expectation and provides no control over deviations of the op-
timization error. We can apply new martingale concentration techniques to achieve stronger
high-probability bounds as in the following theorem.

Theorem 2. Under Assumptions A and C,

(a) with probability at least 1− δ, for any τ ∈ N the predictor x̂T satisfies

f(x̂T )− f(x∗) ≤ 1

T
RT +

τG

T

T∑
t=1

κ(t) + 2GR

√
2τ

T
log

τ

δ
+ φ(τ)GR+

τGR

T
.
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(b) with probability at least 1− 2δ, for any τ ∈ N the predictor x̂T satisfies

f(x̂T )− f(x∗) ≤ 1

T
RT +

τG

T

T∑
t=1

κ(t) + 2GR

√
2τ

T
log

2τ

δ
+

2β(τ)GR

δ
+
τGR

T
.

To better illustrate our results, we now specialize them under concrete mixing assumptions.
We begin with a corollary giving error bounds for geometrically φ-mixing processes (as
defined in Section 2).

Corollary 1. In addition to the conditions of Theorem 2(a), assume φ(k) ≤ φ0 exp(−φ1k
θ).

There exists a finite universal constant C such that with probability at least 1− δ

f(x̂T )− f(x∗) ≤ 1

T
RT + C ·

[
(log T )1/θG

Tφ1

T∑
t=1

κ(t) +GR

√
(log T )1/θ

φ1T
log

(log T )1/θ

δ

]
.

Under geometric φ-mixing, the probabilistic terms are of the same order as the i.i.d. set-
ting [3] to within poly-logarithmic factors. Algebraic mixing yields somewhat slower rates
(see the full version [1] of this paper). More generally, under the same condition on the stabil-
ity, an argument similar to that for Corollary 7 of Duchi et al. [5] implies f(x̂T )−f(x∗)→ 0
with probability one when φ(k) → 0 as k → ∞. Theorem 2(b) can also be extended to
similar corollaries but we omit such discussion here due to lack of space.

To obtain a concrete convergence rate from our results, we need to know bounds on the
stability sequence κ(t) (and the regret RT ). Indeed, for two common first-order meth-
ods, online mirror-descent (see e.g. Theorem 11.1 of [4] or the paper [12]) and regularized
dual averaging [16], known convergence results combined with Theorem 2 give that with
probability at least 1− δ,

f(x̂T )− f(x∗) ≤ 1

T
RT + C · inf

τ∈N

[
GRτ√
T

+
GR√
T

√
τ log

τ

δ
+ φ(τ)GR

]
, (7)

for some universal constant C. The bound (7) captures the known convergence rates for i.i.d.
sequences [3, 12, 16, 4] by taking τ = 1, since φ(1) = 0. Further specializing to the geometric

mixing rate of Corollary 1, one obtains an error bound of O(1/(φ1

√
T )) to poly-logarithmic

factors; this is essentially same as the generalization error in i.i.d. settings.

3.2 Convergence rates for strongly convex functions

It is by now well-known that the regret of online learning algorithms scales as O(log T ) for
strongly convex functions, a result which is originally due to Hazan et al. [6]. Many online
algorithms, including gradient and mirror descent [2, 6, 15] and dual averaging [16, Lemma
10], satisfy the stability bound ‖x(t)− x(t+ 1)‖ ≤ G/(σt) when the loss functions are σ-
strongly convex. Under these conditions, Theorem 1 gives an expected generalization bound
of O(infτ∈N {β(τ) + τ log T/T}), which is faster than the standard rate of O(infτ∈N{β(τ) +√
τ/T}), but the improvement in rates does not directly apply to Theorem 2. In the next

theorem, we derive sharper guarantees when the expected function f is strongly convex by
extending a self-bounding martingale argument due to Kakade and Tewari [8].

Theorem 3. Let Assumptions A–C hold. For any δ < 1/e, T ≥ 3, with probability at least
1− 4δ log n, for any τ ∈ N the predictor x̂T satisfies

f(x̂T )− f(x∗) ≤ 2

T
RT +

2τG

T

T∑
t=1

κ(t) +
32G2τ

σT
log

τ

δ
+

4τRG

T

(
3 log

τ

δ
+ 1
)

+ 2RGφ(τ).

We can establish the following corollary under the previously mentioned stability bound
‖x(t)− x(t+ 1)‖ ≤ G/(σt) for strongly convex online learning algorithms.

Corollary 2. In addition to the conditions of Theorem 3, assume the stability bound κ(t) ≤
G/σt. There is a universal constant C such that with probability at least 1− 4δ log T ,

f(x̂T )− f(x∗) ≤ 2

T
RT + C · inf

τ∈N

[
τG2

σT
log T +

τG2

σT
log

τ

δ
+
G2

σ
φ(τ)

]
.
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The factor of 2 in front of RT is insignificant, since RT = o(T ) for any low-regret online
learning algorithm, so we have no loss in rates. For a few concrete examples, we note that
when the losses F (·; ξ) are σ-strongly convex, online gradient and mirror descent [6, 15], as
well as dual averaging [16], all have RT ≤ C ·G2 log T/σT , so Corollary 2 implies the con-
vergence bound f(x̂T )− f(x∗) = O((G2/σ) infτ∈N[τ log T/T + φ(τ)]) with high probability.
For example, we can now observe that that online algorithms for regularized SVMs satisfy
a sharp high-probability generalization guarantee, even for non-i.i.d. data.

3.3 Fast rates for linear prediction

We now turn to the common statistical prediction setting in which samples come in pairs
of the form (ξ, ν) ∈ Ξ× V, where ν is the label or target value of the sample ξ ∈ Rd, where
‖ξ‖2 ≤ r. We measure the performance of the hypothesis x on the example (ξ, ν) by

F (x; (ξ, ν)) = `(ν, 〈ξ, x〉), ` : V × R→ R+, (8)

where ` is a loss measuring the accuracy of the prediction 〈ξ, x〉. Many learning problems
fall into the framework (8): linear regression, where the loss is `(ν, 〈ξ, x〉) = 1

2 (ν − 〈ξ, x〉)2;
logistic regression, where `(ν, 〈ξ, x〉) = log(1 + exp(−ν 〈ξ, x〉)); boosting; and SVMs all have
the form (8). The natural curvature assumption in this setting is the following.

Assumption D (Linear strong convexity). For fixed ν, the loss function `(ν, ·) is a σ-
strongly convex and L-Lipschitz scalar function over [−Rr,Rr]:

`(ν, b) ≥ `(ν, a) + `′(ν, a)(b− a) +
σ

2
(b− a)2 and |`(ν, b)− `(ν, a)| ≤ L|a− b|

for any a, b ∈ R with max{|a|, |b|} ≤ Rr.

Logistic and linear regression, least-squares SVMs, and boosting on a bounded domain
satisfy Assumption D. Whenever the covariance Cov(ξ) of ξ is non-degenerate under the
stationary distribution Π, Assumption D implies the expected function f is strongly convex,
putting us in the setting of Theorem 3. If we had access to a stable online learning algorithm

with small regret (i.e. both RT = O(log T ) and
∑T
t=1 κ(t) = O(log T )) for losses of the

form (8) satisfying Assumption D, we could simply apply Theorem 3 to guarantee good
generalization properties of the predictor x̂T . We do not know of an existing algorithm
satisfying our desiderata of logarithmic regret and stability. Online gradient descent and dual
averaging algorithms guarantee stability, but do not attain O(log T ) regret since F (·; ξ) is no
longer strongly convex, and while Hazan et al. [6] show that online Newton and follow the
approximate leader (FTAL) algorithms have logarithmic regret, neither algorithm satisfies
even a weakened form of the stability assumption C. Thus we define a new update that
combines FTAL with the Vovk-Azoury-Warmuth forecaster [4, Chapter 11.8]:

x(t) = argmin
x∈X

{
t−1∑
i=1

〈∇F (x(i); (ξi, νi)), x〉+
σ

2

t−1∑
i=1

〈x(i)− x, ξi〉2 +
σ

2
x>(ξtξ

>
t + εI)x

}
.

(9)
We have the following result for the algorithm (9) under Assumption D.

Theorem 4. Assume ‖x‖2 ≤ R for x ∈ X ⊆ Rd, and let x(t) be generated according to the
update (9) with ε = 1. Then with probability at least 1− 4δ log n, for any τ ∈ N,

f(x̂T )− f(x∗) ≤ L2d

σT
(9 + 14τ) log

(
r2T + 1

)
+
σ

T
‖x∗‖22 +

32L2r2τ

σT · λmin(Cov(ξ))
log

τ

δ

+
8τL2

σT

(
3 log

τ

δ
+ 1
)

+
4L2

σ
φ(τ).

The proof of the theorem requires showing a regret guarantee for the update (9), which
adapts related arguments [6, 16] in the literature, as well as developing and controlling a
new weakened form of the stability assumption C. We can further specialize Theorem 4
using different mixing mixing assumptions on the process. As in Corollary 1, we have
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Corollary 3. In addition to the conditions of Theorem 4, assume P is geometrically φ-
mixing. There exists a universal constant C such that with probability at least 1− δ log T ,

f(x̂T )− f(x∗) ≤ C ·

[
L2d(log T )1+ 1

θ

φ1σT
+

L2(log T )
1
θ

φ1σT · λmin(Cov(ξ))
log

(
log T

δ

)]
.

4 Conclusions and Discussion

In this paper, we have shown that the martingale concentration arguments used to derive
online to batch conversions for independent data [3, 8] can be extended to situations where
the somewhat brittle assumptions of i.i.d. samples do not hold. As is the case for earlier
generalization guarantees for online learning, our arguments require only elementary mar-
tingale convergence arguments, and we do not need the more powerful tools of empirical
process theory (e.g. [17]). Our results are of particular interest for machine learning prob-
lems: just as guarantees for stochastic optimization imply generalization error bounds in
the i.i.d. case [3], our results establish that any stable online learning algorithm produces
a hypothqesis that can generalize well even on non-i.i.d. data samples. Additionally, our
results extend to the settings considered by Duchi et al. [5], yielding a family of algorithms
for distributed optimization and optimization over combinatorial spaces.
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