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Abstract

Learning SVM with non positive kernels is is a problem that has been addressed in
the last years but it is not really solved : indeed, either the kernel is corrected (as a
pre-treatment or via a modified learning scheme), either it is used with some well-
chosen parameters that lead to almost positive-definite kernels. In this work, we
aim at solving the actual problem induced by non positive kernels, i.e. solving the
stabilization system in the Kreı̆n space associated with the non-positive kernel.
We first describe this stabilization system, then we expose a simple algorithm
based on the eigen-decomposition of the kernel matrix. While providing satisfying
solutions, the proposed algorithm shows limitations in terms of memory storage
and computational effort. The direct resolution is still an open question.

1 Kreı̆n Space and SVM

From the first stages of SVM [10] , non positive kernels are proposed and used, in particular the
tanh kernel. In many application fields, some huge efforts are made to produce true Mercer kernels
when the natural kernels turn out to be indefinite [4, 3]. Some author even study some kernels
that are definite positive with high probablity [1]. However, until now, there is no adequate solver
available. In [7, 11, 2], the authors propose to solve SVM with indefinite kernel considering that
the indefinite kernel is a perturbation of a true Mercer kernel. In [5], the author states that learning
with indefinite symmetric kernels is actually consisting in finding a stationary point, which is not
unique but each of those performs correct separation. It has been shown [8] that learning with non
positive kernel is actually solving the learning problem in a Kreı̆n space instead of a Hilbert space.
It has also been shown that in this situation, the learning problem is not a minimization anymore
but a stabilization problem. This means that the solution is a saddle point of the cost function. In
the remaining of the section, we briefly introduce the Reproducing Kernel Kreı̆n Space (RKKS) and
propose the stabilization system to be solved to train SVM in Kreı̆n space.

Reproducing Kernel Kreı̆n Space Kreı̆n spaces are indefinite inner product spaces endowed with
a Hilbertian topology. We recall here definitions from [8]

Definition 1.1 Inner Product Let K be a vector space on the scalar field. An inner product 〈., .〉K
on K is a bilinear form where for all f, g, h ∈ K, α ∈ IR :

〈f, g〉K = 〈g, f〉K
〈αf + g, h〉K = α〈f, h〉K + 〈g, h〉K
〈f, g〉K = 0, ∀g ∈ K =⇒ f = 0
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Definition 1.2 Kreı̆n space An inner product space (K, 〈., .〉K) is a Kreı̆n space if there exists two
Hilbert spacesH+,H− spanning K such that

∀f ∈ K, f = f+ + f−, where f+ ∈ H+ and f− ∈ H−
∀f, g ∈ K, 〈f, g〉K = 〈f+, g+〉H+ − 〈f−, g−〉H−

In [8, Proposition 6], the reproducing property is shown : in K a RKKS, there is a unique symmetric
k(x, x′) with k(x, .) ∈ K such that for all f ∈ K, 〈f, k(x, .)〉K = f(x) and k = k+ − k−.

SVM in RKKS Applying this to SVM requires to interpret the stabilization setting. Following
[6], we start from the fact that a (unconstrained) quadratic program in a Kreı̆n space has a unique
solution (if the involved matrix is non singular) which is in general a stationary point. In the case of
SVM, we have to apply some box constraints that may exclude this unique solution. Moreover, the
optimal constrained solution is not necessarily unique anymore. Let xi ∈ X d, i ∈ [1..`] be ` training
points in dimension d, along with their label yi ∈ [−1, 1] representing the class each point belongs
to in a classification problem. Let K be a Kreı̆n space. Let f ∈ K be our objective function.

Proposition 1.1 The initial primal problem is :8>><>>:
stabf,b,ξ

1

2
〈f, f〉K + C

X̀
i=1

ξi

st yi(f(xi) + b) ≥ 1− ξi ∀i ∈ [1..`]
ξi ≥ 0 ∀i ∈ [1..`]

(1)

According to the Kreı̆n space’s properties, we can formulate system (1) into a min-max system8>><>>:
min
f+,b,ξ

max
f−

1

2
〈f+, f+〉H+ −

1

2
〈f−, f−〉H−+ Ci

X̀
i=1

ξi

st yi(f+(xi) + f−(xi) + b) ≥ 1− ξi ∀i ∈ [1..`]
ξi ≥ 0 ∀i ∈ [1..`]

(2)

Proposition 1.2 We claim that system (2) can be solved with the following setting :8>><>>:
min

f+,f−,b,ξ

1

2
〈f+, f+〉H+ +

1

2
〈f−, f−〉H−+ Ci

X̀
i=1

ξi

st yi(f+(xi) + f−(xi) + b) ≥ 1− ξi ∀i ∈ [1..`]
ξi ≥ 0 ∀i ∈ [1..`]

(3)

Let’s define f+(.) =
∑`

i ηik+(xi, .) and f−(.) = −
∑`

i ηik−(xi, .).8>><>>:
min
η,b,ξ

1

2
η>(K+ +K−)η + Ci

X̀
i=1

ξi

st Y ((K+ −K−)η + be) ≥ e− ξ
ξi ≥ 0 ∀i ∈ [1..`]

⇔

8>><>>:
min
η,b,ξ

1

2
η>K̃η + Ci

X̀
i=1

ξi

st Y (Kη + be) ≥ e− ξ
ξi ≥ 0 ∀i ∈ [1..`]

(4)
where K+ (resp. K−) is the kernel matrix provided by the k+ (resp. k−), Y is a diagonal matrix
containing y and e a unit vector.

In the remaining of this position paper, we propose a way to find a decomposition of the non-positive
matrix that can fit the previous problem and that produces an exact solution to the stabilization prob-
lem. First we show how to solve the stabilization system in the primal using a spectral decomposi-
tion. Then we use the same reasoning starting from a dual stabilization system. We show that both
methods lead to the same final algorithm (EigNPSVM). Finally, we provide simple experiments il-
lustrating the ability of EigNPSVM to solve exactly a non positive SVM and we point out several
research direction that would confirm our claim and hopefully lead to a less-demanding algorithm
(without spectral decomposition).
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2 Decomposition of the primal system according to eigenvalues

Assume that f(.) =
∑̀
i=1

βik(xi, .). Then system (1) can be written as

8><>:
stabβ,b,ξ

1

2
β>Kβ + Ce>ξ

st Y (Kβ + be) ≥ e− ξ
ξi ≥ 0 ∀i ∈ [1..`]

(5)

where K is the kernel matrix, Y is a diagonal matrix containing y and e a unit vector.

Eigen decomposition The stabilization task means that we want to minimize according to the pos-
itive components and maximize according the negative components. We use spectral decomposition
to identify those components. Let V be the column matrix of eigenvectors and Λ be the diagonal
matrix of corresponding eigenvalues. We have K = V ΛV >. We sort V and Λ according the sign
of eigenvalues, such that V = [V+, V−] and Λ = [Λ+, 0; 0,Λ−]. Let us define γ = V >β. The
stabilization process can be separated between a minimization of the positive part on the one hand
and the maximization of the negative part on the other hand:8><>:

stabγ,b,ξ
1

2
γ>Λγ + Ce>ξ

st Y (V Λγ + be) ≥ e− ξ
∀i ∈ [1..`] ξi ≥ 0

⇔

8><>:
min
γ+,b,ξ

max
γ−

1

2
γ>+Λ+γ+ +

1

2
γ>−Λ−γ− + Ce>ξ

st Y (V+Λ+γ+ + V−Λ−γ− + be) ≥ e− ξ
∀i ∈ [1..`] ξi ≥ 0

(6)

Two separated problems Here we show how to transform the min-max system into a full mini-
mization. If γ− is already optimal and fixed:

8><>:
min
γ+,b,ξ

1

2
γ>+Λ+γ+ + Ce>ξ

st Y (V+Λ+γ+ + V−Λ−γ− + be) ≥ e− ξ
∀i ∈ [1..`] ξi ≥ 0

⇒ KKT

8>>>><>>>>:
γ>+Λ+ − α>Y V+Λ+ = 0

α>Y e = 0

Ce> − α> − η> = 0
αi ≥ 0 ∀i ∈ [1..`]
ηi ≥ 0 ∀i ∈ [1..`]

(7)
The same can be applied to the maximization part, admitting that γ+, b, ξ are already optimal and
fixed. In the same time, we transform max into min by changing the sign of the objective function.8<: min

γ−
−1

2
γ>−Λ−γ−

st Y (V+Λ+γ+ + V−Λ−γ− + be) ≥ e− ξ
⇒ KKT


γ>−Λ− + α>Y V−Λ− = 0
αi ≥ 0 ∀i ∈ [1..`]

(8)

Note that α are the same Lagrange multipliers as in system (7) since they apply to the same constraint
of the original system (6).

Global minimization primal system System (7) and (8) are reassembled to produce a full mini-
mization system, equivalent to the stabilization one (4).8><>:

min
γ,b,ξ

1

2
γ>Λ̃γ + Ce>ξ

st Y (V Λγ + be) ≥ e− ξ
ξi ≥ 0 ∀i ∈ [1..`]

(9)

where Λ̃ = [Λ+, 0; 0,−Λ−]. This system has the same shape as system (4). This let us think that
the spectral decomposition is a good candidate to solve the stabilization problem in Kreı̆n space.

Resolution via the dual From the primal problem (9), using KKT optimality conditions (7) and
(8), the dual comes quite easily as8><>:

max
α

−1

2
α>G̃α+ α>e

st α>y = 0
0 ≤ αi ≤ C ∀i ∈ [1..`]

(10)
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with G̃ = Y V Λ̃V >Y . To obtain this system, note that γ = [V >+ Y α,−V >− Y α]. This is a classic
quadratic program, providing a sparse solution α. To be able to classify unknown examples through
the original kernel, we need to produce β = V γ = V [V >+ Y α,−V >− Y α] which can be arranged
as β = V Ṽ >Y α with Ṽ = [V+,−V−]. One can remark that if the kernel is definite positive, V−
is empty, hence βi = yiαi and f(.) =

∑`
i yiαik(xi, .). Having a non positive kernel, the sparsity

of the solution is lost. Moreover, the sign of βi, which can be either positive or negative, is not
only linked to the class of the corresponding example : examples can contribute negatively to the
solution.

3 Decomposition of the dual system according to eigenvalues

We now show that we obtain the same resolution system when taking the dual point of view. The
stabilization setting induces that the solution minimizes the cost function in some directions and
maximizes it in others.

Proposition 3.1 Let Dmin represent the directions that should be minimized and Dmax represent
the directions that should be maximized. The optimality conditions at the saddle point can be written
as follows, considering that we can decompose the problem into a min-max one (ie. minimize in
Dmin : lagrange multiplier are positive for a superiority constraint, maximize in Dmax : lagrange
multipliers are negative for a superiority constraint).

eq.(1) and

8>>>>>>>>><>>>>>>>>>:

f(.) =
X̀
i=1

αiyikK(xi, .)

X̀
i=1

αiyi = 0

C − αi − βi = 0, αi ≥ 0, ∀i|xi ∈ Dmin
C + αi − βi = 0, αi ≤ 0, ∀i|xi ∈ Dmax
βi ≥ 0, {∀i ∈ [1..`]}

⇒

8>>><>>>:
stabα

1

2
α>Gα− e>α

st. y>α = 0
0 ≤ αi ≤ C ∀i|xi ∈ Dmin
−C ≤ αi ≤ 0 ∀i|xi ∈ Dmax

(11)
where G(i, j) = yiyjkK(xi, xj). However, the kernel matrix G is not definite positive and the dual
system cannot be solved directly with classical technics. Moreover, we need to define the partition
of the training points in Dmin and Dmax.

Eigen decomposition Let U be the column matrix of eigenvectors and Λ be the diagonal matrix
of corresponding eigenvalues. We have G = UΛU>, U = [U+, U−] and Λ = [Λ+, 0; 0,Λ−]. Let
us define a = U>α. The multipliers’ vector α can be written as α = Ua = U+a+ + U−a− with
a the coordinates in the eigenvector space, a+ (resp. a−) the coordinates corresponding to positive
(resp. negative) eigenvalues. We can rewrite the dual system:8>>><>>>:

staba
1

2
a>Λa− e>Ua

st. y>(Ua) = 0
0 ≤ U+a+ ≤ Ce
−Ce ≤ U−a− ≤ 0

(12)

Let’s note ã = [a+;−a−]. We observe that a>−Λ−a− = (−a−)>Λ−(−a−). Let Λ̃ =
[Λ+, 0; 0,−Λ].8>>><>>>:

min
a+

max
a−

1

2
a>+Λ+a+ +

1

2
a>−Λ−a− − e>U+a+ − e>U−a−

st. y>(U+a+ + U−a−) = 0
0 ≤ U+a+ ≤ Ce
−Ce ≤ U−a− ≤ 0

⇔

8><>:
min
a

1

2
ã>Λ̃ã− e>Uã

st. y>Uã = 0
0 ≤ Uã ≤ Ce

(13)

Algorithm EigNPSVM Solving the non positive SVM is quite simple in this setting : find α̃
according to system (14), and then come back to α as follows: α̃ = Uã, U>α̃ = ã. Deduce a with
a = ã and a(m) = −ã(m) where m indicate the position of negative eigenvalues, then α = Ua.
Let G̃ = U Λ̃U>. 8><>:

min
α̃

1

2
α̃>G̃α̃− e>α̃

st. y>α̃ = 0
0 ≤ α̃ ≤ C

(14)
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This algorithm is limited due to its need for eigenvalues/eigenvectors, which requires to compute
the complete kernel and decompose it. We can reduce the complexity by computing an approximate
version of the decomposition, taking only the largest absolute eigenvalues. The other limitation
concerns the evaluation time in the original space, since the final solution α is not sparse (the solution
is sparse only in α̃).

4 Illustration, discussion and conclusion

With the tanh kernel. The hyperbolic tangent kernel k(xi, xj) = tanh(a ∗x′ixj + b) is a popular
kernel for SVM, even though it is not definite positive. It is well known [9] that for some range of
parameters, one can find a solution which is correct in the sense of usual optimization, ie. minimiza-
tion. For some very simple experiments on a checker dataset, we illustrate in figure 1 the ability
of the proposed method to solve the stabilization problem for any range of parameter values of the
tanh kernel. The resulting kernel matrix is highly non positive, the largest eigenvalues is negative
(mini(λi) = −124.80, maxi(λi) = 19.31). In this experiments, we also show that using only a
partial eigen-decomposition of the kernel matrix leads to correct results.

Figure 1: Results of EigNPSVM on a simple checker problem. The left figure shows the solution with a
complete eigen decomposition of the kernel. The middle figure represents the 50 highest (in absolute val-
ues) eigenvalues from the kernel eigen decomposition. The right figure shows the resulting classifier using
EigNPSVM with only the first 50 eigenvalues/eigenvectors. Those figures illustrate the ability of EigNPSVM
to solve a highly non positive SVM. On both left and right figure, the support vectors are represented by large
pink circles : they correspond to α̃ in system (14).

Observations on the final solution The proposed algorithm has a non sparse final solution, for
which coefficients αi can be negative. We interpret this as an effect of the stabilization setting,
in which some components contribute to the minimization and some others contribute to the max-
imization. If the min-max problem is quite clear once decomposed according to the sign of the
eigenvalues, it is not easy to see in the original space. On figure 2, we show an interesting output of
EigNPSVM. On this figure, we want to point out the fact that training points associated to positive
αi (resp. negative) are grouped together in the original space. This observation was a motivation to
the definition of Dmin and Dmax in definition (??).

Discussion and conclusion In this on-going research, we want to solve the non positive SVM (and
similar kernelized algorithms) using the stabilization setting, which is to our mind the actual problem
to be solved. However the stabilization of a quadratic program is not a common task, even less when
it is constrained. We know that a non positive kernel leads us to work in a Kreı̆n space but so far it
did not really help in the definition of a pertinent solver. In this study, we show that we can formulate
the non positive SVM as a quadratic program in which examples can contribute either positively or
negatively to the solution. The interpretation is that the cost function, to be stabilized, has to be
minimized according to some components and maximized according to others. From the spectral
analysis of the kernel, we deduce a simple algorithm that solves the stabilization problem which
consists in modifying the kernel to make it positive definite, solving a classic quadratic program
under box constraints, and using the eigenvector matrix to transpose the (sparse) solution into the
original kernel space. This procedure has a cost : first, it requires to do the eigen-decomposition of
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Figure 2: Observation on the positive or negative contribution of the final αi in the solution. On the left figure,
we draw the simple binary classification problem. On the middle one, the result of EigNPSVM is shown (using
a tanh kernel). On the right figure, we represent the sign of the contribution αi of each training point xi for the
learnt decision function. We observe that some areas contain only positive contribution while the rest contains
only negative contribution: there is no overlap. Moreover, we can see that the label of the training points do not
influence on those areas.

the kernel matrix, which implies that the kernel matrix has to be fully computed ; second, the final
solution is non sparse and it slows down the test of new examples. The next step of this research
is the definition of an algorithm that avoids the spectral analysis. To do so we think that we should
use the observation that there are some areas of positive/negative contributing points in the example
space : knowing those area, we could apply an active set algorithm. Moreover, we are convinced
that there exists an equivalent sparse solution to the non sparse one we obtain.

References

[1] Sabri Boughorbel, Jean-Philippe Tarel, and Francois Fleuret. Non-mercer kernels for svm
object recognition. In In British Machine Vision Conference (BMVC, pages 137–146, 2004.

[2] Jianhui Chen and Jieping Ye. Training svm with indefinite kernels. In William W. Cohen,
Andrew McCallum, and Sam T. Roweis, editors, ICML, volume 307 of ACM International
Conference Proceeding Series, pages 136–143. ACM, 2008.

[3] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Thomas G. Di-
etterich, Suzanna Becker, and Zoubin Ghahramani, editors, NIPS, pages 625–632. MIT Press,
2001.

[4] Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Positive definite rational kernels. In In
Proceedings of The 16th Annual Conference on Computational Learning Theory (COLT 2003,
pages 41–56. Springer, 2003.

[5] Bernard Haasdonk. Feature space interpretation of svms with indefinite kernels. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 27:482–492, 2005.

[6] Babak Hassibi and Ali H. Sayed andThomas Kailath. Indefinite-quadratic estimation and
control: a unified approach to H2 and H [infinity] theories, volume 16. 1999.

[7] R. Luss and A. d’Aspremont. Support Vector Machine Classification with Indefinite Kernels.
Mathematical Programming Computations, 2009.

[8] Cheng Soon Ong, Xavier Mary, Stéphane Canu, and Alexander J. Smola. Learning with non-
positive kernels. In ICML ’04: Proceedings of the twenty-first international conference on
Machine learning, page 81, New York, NY, USA, 2004. ACM.

[9] Hsuan tien Lin and Chih-Jen Lin. A study on sigmoid kernels for svm and the training of
non-psd kernels by smo-type methods. Technical report, 2003.

[10] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, N.Y, 1995.
[11] Yiming Ying, Colin Campbell, and Mark Girolami. Analysis of svm with indefinite kernels.

In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances
in Neural Information Processing Systems 22, pages 2205–2213. 2009.

6


