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Abstract

Proximal gradient methods are popular first order algorithms currently used to
solve several machine learning and inverse problems. We consider the case where
the proximity operator is not available in closed form and is thus approximated via
an iterative procedure leading to a nested algorithm. For the first time, we show
that relying on an appropriate notion of approximations, which gives an explicit
stopping rule for the inner loop, convergence rates for the two-loops algorithm
can be proved for accelerated procedures for a large class of approximation algo-
rithms. An experimental comparison with a benchmark primal-dual algorithm is
reported and confirms a good empirical performance.

1 Introduction

Accelerated proximal gradient methods [9, 3, 12] are among the most popular first-order techniques
to optimize convex composite functionals defined on R

d of the form

F (x) = f(x) + g(x), g(x) = ω(Bx),

where f is continuously differentiable with 1/λ Lipschitz continuous gradient, B : Rd → R
m is

a bounded and linear operator, and ω : Rm → R a positively homogeneous convex function, in
general nonsmooth. Typical sparsity inducing regularizers in machine learning have this structure
(see e.g. [1, 8]). For arbitrary initialization y0 = x0 ∈ R

d, the generic iteration of a well-known
instance of such methods, FISTA (fast iterative shrinkage thresholding algorithm), can be written as

xk+1 = proxλg(yk − λ∇f(yk)); yk+1 = xk+1 +
tk − 1

tk+1
(xk+1 − xk) (1)

for a sequence of tk’s satisfying t0 = 1 and tk+1 = (1 +
√

1 + 4t2k)/2. Given λ > 0, proxλg is the
proximity operator of λg defined as [7]

proxλg(y) = argmin
x∈Rd

{g(x) +
1

2λ
‖x− y‖2}. (2)

For several functions g, which are relevant in the applications, the proximity operator is not available
in closed form, and the solution of (2) is usually computed via an iterative minimization algorithm.
Therefore, the resulting scheme is a two-loops algorithm, constituted of an outer iteration of type
(1), and an internal one which serves to compute the prox. The contribution of this paper is the study
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of the global convergence rate of the resulting nested algorithm. We prove for the first time bounds
on the convergence rate of the entire two-loops procedure for a variety of inner algorithms. This is
done in three steps: first, by introducing a suitable approximation notion for proximal points (see
[10]), leading to explicit stopping rules for the inner iterations; second, by proving convergence rates
for the inexact implementations of algorithm (1) without taking into account the cost of the com-
putation of the proximity operator (similarly to what has been done in [11]), and finally by adding
the costs of the inner loop. The paper is organized accordingly: in Section 2 we introduce admis-
sible approximations of the proximal point, and we state the convergence of the inexact accelerated
proximal point algorithm. Moreover, we show a useful characterization in terms of duality gap. In
Section 3 we study the global convergence rate of nested iterations. Our results show that for inner
algorithms converging sufficiently fast, the global convergence rate is close to the one of the exact
scheme. Finally, in Section 4, we show a comparison of the proposed method with a benchmark first
order primal-dual algorithm proposed in [4]. Due to space limitation the proofs are not included and
are contained in a longer version of the paper [14].

2 Convergence of inexact FISTA

We consider a notion of approximation of proximal points that has been introduced in [5] and re-
cently studied in [10]. It is based on the relaxation of the first order conditions satisfied by exact
proximal points, and involves the definition of ǫ-subdifferential.

Definition 1. Let ǫ ≥ 0. We say that z ∈ R
d is an approximation of proxλg(y) with ǫ-precision and

we write z ≅ǫ proxλg(y) if and only if
y − z

λ
∈ ∂ ǫ2

2λ

g(z).

The approximation requirement is more restrictive than the one proposed in [11], and lead to the
following convergence rates for the inexact version of algorithm (1), which show a better dependence
on the errors w.r.t. those obtained in [11].

Theorem 1. Consider algorithm (1), where xk+1 ≅ǫk proxλg(yk − λ∇f(yk)). Then, if ǫk =
O(1/kq) with q > 1/2, the sequence (xk)k∈N is minimizing for F and if the infimum of F is
attained the following bounds on the rate of convergence hold true

F (xk)−minF =















O
(

1/k2
)

if q > 3/2

O
(

1/k2
)

+ O
(

log k/k2
)

if q = 3/2

O
(

1/k2
)

+ O
(

1/k2q−1
)

if q < 3/2.

2.1 Computing admissible approximations

Admissible approximations in the sense of Definition 1 can be characterized in terms of a suitably
defined duality gap, and this leads to a very natural test for assessing admissible approximations. The
Fenchel-Rockafellar duality formula guarantees that, if δK is the indicator function of K := ∂ω(0)
(where ∂ denotes the subdifferential),

Ψλ(v) =
1

2λ
‖λBT v − y‖2 + δK(v)−

1

2λ
‖y‖2 , (3)

is the dual function of the minimization problem of Φλ(x) = g(x)+ 1
2λ‖x−y‖2 defining the proxim-

ity operator. The duality gap is G(x, v) := Φλ(x)+Ψλ(v) and satisfies min(x,v)∈Rd×Rm G(x, v) =

0. Moreover, if v̄ is a solution of the dual problemminv Ψλ(v), then z̄ = y−λBT v̄ solves the primal
problem (2). This also means that minv G(y − λBT v, v) = 0.

Proposition 1. Let v ∈ R
m. The following statements are equivalent

a) G(y − λBT v, v) ≤ ǫ2/(2λ)

c) λBT v ≅ǫ PλK(v), with PλK the proximity operator of δλK , i.e. the projection onto λK

b) y − λBT v ≅ǫ proxλg(y).

Proposition 1 shows that admissible approximations can be found by minimizing the duality gap.
Moreover, it can be shown that in order to minimize G, it is enough to minimize the dual function
Ψλ. Thus, admissible approximations can be found for instance by applying FISTA to the dual
function Ψλ, which is a constrained smooth problem.
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3 Asymptotic global iteration complexity

Theorem 1 is mostly of theoretical interest, since it does not take into account the costs due to the
computation of the proximal point at each step. Indeed, each iteration of the inexact version of
FISTA consists of a gradient descent step, to which we refer to as external iteration, and an inner
loop, to approximate the proximity operator of g up to a precision ǫk. More generally, it can be

shown that given an (internal) algorithm that compute xk+1 in at most (Dλ)/(ǫ
2/p
k ), iterations, with

p > 0 and ǫk = O(1/kq), we can bound the global complexity Cg of the two loops algorithm by

Cg = ciNi + ceNe =







O
(

1/ǫ
2q/p+1

2q−1

)

+O
(

1/ǫ
1

2q−1

)

if 1/2 < q < 3/2

O
(

1/ǫ
2q/p+1

2

)

+O
(

1/ǫ
1
2

)

if q > 3/2 .
(4)

where ci and ce denotes the unitary costs of each type of iteration and Ni and Ne are the total
number of inner and outer iterations, respectively. From the estimates above, one can easily see

that, in each case, the lower global complexity is reached for q → 3/2 and it is Cg = O(1/ǫ
p+3

2p +δ)

for whatever small δ > 0. Note that, for p → +∞ we have a complexity of O(1/ǫ1/2+δ): in
other words the global convergence rate tends to 1/N2, in the total number N of iterations, and the
algorithm behaves once more as an accelerated method. On the other hand, using FISTA to solve
the dual problem (3) at each step, gives a theoretical rate of O(1/ǫ2+δ) (for q → 3/2). Similarly, if
we consider an inner algorithm converging linearly, for q > 3/2, the resulting convergence rate is

O((1/ǫ1/2) log(1/ǫ)), and thus inexact FISTA is again an accelerated method. We remark that the
analysis of the global complexity given above is valid only asymptotically, since we did not estimate
any of the constants hidden in the O symbols (in particular ci and ce). However, in real situations
constants do matter and, in practice, the most effective accuracy rate q is problem dependent and
might be different from 3/2, as we illustrate in the experiments in the next section. The asymptotic
point of view also distinguishes our analysis from that in [6], where an accuracy is a priori fixed,
and a constant number of internal iterations at each step is shown to be the “optimal” strategy.

4 Numerical Experiments

In this section, we measure the performance of the two loops algorithm inexact FISTA combined
with FISTA applied to (3), in comparison with the non accelerated version ISTA combined with
FISTA applied to (3), and with the primal-dual algorithm proposed in [4] (PRIDU). Following The-
orem 1, we consider sequences of errors of type ǫk = C/kq, with q, hereafter referred as accuracy
rate, chosen between 0.1 and 1.7. We analyze two well-known problems: deblurring with total
variation regularization and learning a linear estimator via regularized empirical risk minimization
with the overlapping group lasso penalty (OGL problem). When taking into account the cost of
computing the proximity operator, there is a trade-off between the number of external and inter-
nal iterations. Since internal and external iterations in general have different computational costs
— which depend on the specific problem considered and the machine CPU — the total number
of iterations is not a good measure of the algorithm’s performance. Therefore, for all algorithms
we provide the number of external and internal iterations and the CPU time needed to reach a de-
sired accuracy for the relative difference to the optimal value. We use the warm-restart procedure,
consisting in initializing the internal algorithm with the solution obtained at the previous step. We
empirically observed that this initialization strategy drastically reduces the total number of iterations
and speeds up the algorithm. All the numerical experiments have been performed in MATLAB, on
an iMac with Intel Core i5 CPU, 2,5 Ghz, 6MB cache L3, and 6 GB of RAM. For the deblurring
problem, we followed the same experimental setup as in [2]. The OGL problem has been generated
from the breast cancer dataset provided by [13]. The structure of the overlapping groups gives rise
to a matrix B of size 15126 × 3510. Despite the high dimensionality, one can take advantage of
its sparseness. We analyze the choice of the regularization parameter τ = 0.01. As concerns the
TV problem, inexact FISTA+FISTA (q = 1.3 or q = 1.5) outperforms both PRIDU and ISTA,
for high precisions. PRIDU exhibits a fast convergence at the beginning, but then slows down for
higher precisions. For the OGL problem, and precision 10−4, inexact FISTA is the fastest. For the
middle precision, the algorithms’ performances are comparable. For the highest precision, PRIDU
and ISTA perform better. Summarizing, the performance of Algorithm 1 combined with FISTA on
the dual and warm restart is comparable with state-of-the-art algorithms, being sometimes better. To
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Table 1: Deblurring with Total Variation regularization (top) and Breast cancer dataset: Overlapping
Group Lasso (bottom). Performance evaluation of inexact FISTA, ISTA and PRIDU, corresponding to differ-
ent choices of the parameters q, and σ suggested by the authors, respectively. Concerning inexact FISTA and
ISTA, the results are reported only for the q’s giving the best results. The entries in the table refer to the CPU
time (in seconds) needed to reach a relative difference w.r.t. to the optimal value below the thresholds 10−4,
10−6 and 10−8, the number of external iterations (# Ext), and the total number of internal interations (# Int).

Precision 10−4 10−6 10−8

Algo Time # Ext # Int Time # Ext # Int Time # Ext # Int

in FISTA
q = 1.3 16.2 118 1600 63.6 387 6437 272.1 1300 28350

ISTA
q = 0.1 36.9 1341 1341 147.2 5346 5346 635.4 23031 23031

PRIDU
σ = 10 7.4 362 - 165.7 8186 - 4684 231848 -

Precision 10−4 10−6 10−8

Algo Time # Ext # Int Time # Ext # Int Time # Ext # Int

in FISTA
q = 1.3 2.1 51 2103 11.2 247 11389 60.4 1179 61915

ISTA
q = 0.5 4.4 1217 1827 9.5 2850 3460 14.9 4603 5213

PRIDU
σ = 1.07 5.8 1602 - 11.0 3026 - 16.1 4452 -

this purpose, the experiments also give some guidelines for choosing the parameter q. We also show
situations where the acceleration is lost, in particular referring to high precision.
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