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Abstract

Alternating minimization has emerged as a popular heuristic for large-scale ma-
chine learning problems involving low-rank matrices. However, there have been
few (if any) theoretical guarantees on its performance. In this work, we investi-
gate the natural alternating minimization algorithm for the popular matrix sensing
problem first formulated in [RFP07]; this problem asks for the recovery of an un-
known low-rank matrix from a small number of linear measurements thereof. We
show that under suitable RIP conditions, alternating minimization linearly con-
verges to the true matrix. Our result can be extended to matrix completion from
randomly sampled entries. Our analysis uses only elementary linear algebra and
exploits the fact that, under RIP, alternating minimization can be viewed as a noisy
version of orthogonal iteration (which is used to compute the top singular vectors
of a matrix).

1 Introduction

Alternating minimization is a popular heuristic for solving non-convex optimization problems in
practice [Bra03, Kor08, GB00]. Typically, it involves partitioning the variables into two sets, such
that minimizing over either one set is easy when the other one is held fixed. The algorithm then
alternates between updating each set in turn, holding the other fixed, until convergence. The most
attractive feature of alternating minimization is it’s simplicity. In particular, in many problems of
interests each of the optimization steps turns out to be simple. For instance, in the case of matrix
sensing and matrix completion, each of the optimization steps turns out to be a least squares problem,
which can be solved efficiently.

The low-rank matrix sensing (LRMS) problem, first proposed by Recht, Fazel and Parrilo
[RFP07], seeks to recover a rank-k matrix 1 given a set of linear measurements of the matrix. For-
mally, let A : Rm×n → Rd be a linear operator, and b = A(M) ∈ Rd, be d linear measurements of
a rank-k matrix M ∈ Rm×n. The goal is to recover M given b and A. Now, if d ≥ m · n, and if
A is invertible then M can be uniquely estimated by solving system of linear equations b = A(X).
However, if d < m · n, then A cannot be invertible and hence infinitely many X satisfy b = A(X).
To alleviate this issue, several measurement schemes (A) have been proposed that ensure a unique
solution to the following problem:

Find X s.t A(X) = b, rank(X) ≤ k, X ∈ Rm×n, b ∈ Rd. (LRMS)
While restricting rank of X leads to unique solution, the problem becomes NP-hard in general

[MJCD08]. However, several recent results show that by suitably designing measurement matrices
(A), (LRMS) can be solved exactly in poly(m,n, k) time and hence by uniqueness of the solution to
(LRMS), one can recover the underlying matrix M [RFP07, JMD10].

1Through out the paper we assume k to be very small compared to matrix size and use rank-k or low-rank
matrix interchangeably.
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RIP-based Matrix Sensing: One popular method to design measurement matrices (A) is by using
random matrices, i.e., each element of Ai (that provides i-th measurement) is sampled i.i.d. from
a 0-mean sub-Gaussian distribution. In fact, a more general characterization of such measurement
matrices is through Restricted Isometry Property (RIP) [CT05], that requires the transformation A
to act as an (approximate) isometry for all low-rank matrices (see Definition 3.1). Using such design
matrices, several methods have been shown to exactly recover the underlying rank-k matrix M ∈
Rm×n using only O(kn logm) measurements2, which is also information theoretically optimal.

There are two existing methods to solve (LRMS) that are known to have provable guarantees on
recovery:

1. Convex relaxation via nuclear norm [RFP07]: In this approach, a regularizer term (which is
chosen to be the nuclear norm of the matrix) is added to the objective function to promote
low rank solutions. The resulting problem is solved via convex optimization techniques.

2. Singular Value Projection [JMD10]: This is a projected gradient descent method where af-
ter each gradient descent step, the solution is projected on to the space of low rank matrices.

One issue with both the above algorithms is typically, they require to find SVD at each iteration,
hence scales poorly to large matrices. In comparison, alternating minimization solves only a least
squares at each step and hence is much more scalable. approaches. Moreover, alternating minimiza-
tion has been observed to have very good performance as compared to both of the above methods
empirically [JMD10].

For the (LRMS) problem, alternating minimization takes advantage of the natural decomposition
of a m × n low rank matrix X = UV † where U ∈ Rm×k and V ∈ Rn×k and tries to solve the
following optimization problem:

min
U,V

‖A(UV †)− b‖22,

s.t. U ∈ Rm×k, V ∈ Rn×k, (1)

where V † denotes the Hermitian conjugate (or transpose) of V . In each step of alternating mini-
mization, the algorithm optimizes over U holding V fixed and then optimizes over V holding U
fixed. The algorithm iterates till convergence. Each optimization step in the above procedure turns
out to be a least squares problem and can be accomplished efficiently. Though alternating minimiza-
tion has been observed to perform well empirically, there have been no theoretical guarantees on its
performance.

In this work, we prove the first theoretical guarantees on the performance of alternating minimization
for the (LRMS) problem. In particular, we show that if the sensing matrices satisfy RIP with a small
enough RIP constant (δ2k), then alternating minimization achieves linear convergence to the true
low rank matrix M . Finally, we remark that our results can also be extended to the problem of low
rank matrix completion from randomly sampled entries under standard incoherence assumptions
[CR09]. For matrix completion, we show that the time complexity of alternating minimization
method is Õ(kmn log(1/ε)) while the best known trace-norm minimization based method has time
complexity Õ(mn2 1√

ε
).

The rest of the paper is organized as follows. We formally present the alternating minimization
algorithm for (LRMS) in Section 2, our main result regarding convergence of the alternating mini-
mization in Section 3 and finally conclude with some discussion in Section 4.

2 Alternating Minimization Algorithm

In this section, we present the alternating minimization algorithm for matrix sensing. This algorithm
is well known in the literature and we reproduce it here only for the sake of completeness.

2Throughout the paper we assume m < n.
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Algorithm 1 Alternating minimization for matrix sensing

1: Input b,A
2: U0 = SV D(A†b, k) i.e., top-k left singular vectors of A†b =

∑
iAibi

3: for t = 0, · · · , T − 1 do
4: V t+1 ← argminV ∈Rn×k ‖A(U tV †)− b‖22
5: U t+1 ← argminU∈Rm×k ‖A(U(V t+1)†)− b‖22
6: end for
7: Return X = UT (V T )†

Note that in the above we use the fact that without loss of generality, linear measurements b = A(M)
can be represented as:

b =


〈A1,M〉
〈A2,M〉

...
〈Ad,M〉

 ,
where Ai ∈ Rm×n,∀i and 〈Ai,M〉 = tr(A†iM) and A†i denotes the hermitian conjugate (or trans-
pose) of Ai.

3 Theoretical Guarantees

In this section, we state our main result concerning the convergence of Algorithm 1 for the (LRMS)
problem. Due to space constraints, we only give the main intuition and not the entire proof. We will
provide a complete proof of the Theorem 3.2 in the full version of this paper.

We start with the definition of Restricted Isometry Property (RIP) of linear measurement operator
A.
Definition 3.1. [RFP07] A linear operatorA(·) : Rm×n → Rd acting on the space of real matrices,
Rm×n is said to satisfy k-RIP with constant δk if for every rank-k X , we have the following :

(1− δk) ‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δk) ‖X‖2F . (2)

Note that the above definition is a straightforward extension of the RIP assumption proposed by
[CT05] for compressive vector sensing. Furthermore, several random matrix ensembles with suffi-
cient measurements (d) satisfy RIP. Formally, if d ≥ 1

δ2k
kn log n and each entry of Ai is sampled

i.i.d. from a 0-mean sub-Gaussian distribution then k-RIP is satisfied with constant δk.

Now, we present our result for Algorithm 1 when applied to the RIP-based matrix sensing:

Theorem 3.2. Let M = U∗Σ∗V ∗
†

be a rank-k matrix with non zero singular values σ∗1 ≥ σ∗2 ≥
· · · ≥ σ∗k. Also, let A(·) : Rm×n → Rd be a linear measurement operator that satisfies 2k-RIP
with RIP constant δ2k < σk

10kσ1
. Suppose, AltMin algorithm (Algorithm 1) is supplied inputs A,

b = A(M). Then, the (t+ 1)-th iterates U t+1, V t+1 of the AltMin algorithm satisfy:

dist
(
V t+1, V ∗

)
≤ αV · dist

(
U t, U∗

)
and

dist
(
U t+1, U∗

)
≤ αU · dist

(
V t+1, V ∗

)
where αV , αU < 1 are some constants depending only on δ2k and dist (U,W ) denotes the principal
angle based distance between subspaces spanned by the columns of U ∈ Rm×k and W ∈ Rm×k
(See Definition 3.3).
Definition 3.3. [GL96] Given two orthonormal column matrices U and W , the distance between
the subspaces spanned by the columns of U and W is given by:

dist (U,W )
def
= ‖U†⊥W‖2 = ‖W †⊥U‖2

where U†⊥ and W †⊥ are orthonormal basis of the spaces Span (U)
⊥ and Span (W )

⊥ respectively.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

The key idea of the proof of Theorem 3.2 is that when δ2k = 0, AltMin is the same as Orthogonal
Iteration (a generalization of the power method used to calculate the k largest singular vectors of
a matrix; please refer [GL96], Chapter 8.2.4). However, in our case δ2k 6= 0 but is only a small
constant. The key observation here is that in this case, AltMin can be viewed as a noisy version of
orthogonal iteration with the noise depending on δ2k. For δ2k small enough, the noise decreases in
each step leading to a linear convergence of the iterates to the true matrix.

We also prove a similar theorem for the matrix completion problem. That is, assuming incoherence
and by observing a “large” enough number of random entries of the underlying matrix, alternating
minimization can recover the true matrix. Please refer to the full version of this paper for precise
guarantees.

4 Conclusion

In addition to providing theoretical justification to using alternating minimization for matrix sensing,
our result suggests many directions for future work. There are many problems in machine learning
(for e.g., sparse + low rank completion) where alternating minimization has been observed to per-
form well. Our methods in this paper may be useful in obtaining theoretical guarantees on the per-
formance of alternating minimization for these problems as well. More generally, our result shows
that non-convex optimization techniques may prove much more efficient than convex optimization
techniques in solving some problems which motivates us to increase our efforts in understanding
various non-convex optimization heuristics.
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