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Abstract

The Primal-Dual Hybrid Gradient method is a powerful splitting scheme for large-
scale constrained and non-differentiable problems. We present practical adaptive
variants of PDHG that converge more quicky and are easier to use than conven-
tional splitting schemes. We also study the convergence of PDHG, and prove new
results guaranteeing convergence of the method when adaptivity is used properly.

1 Introduction

This manuscript considers saddle-point optimization problems of form

min
x∈X

max
y∈Y

f(x) + 〈Ax, y〉 − g(y) (1)

where f and g are convex functions,A ∈ RM×N is a matrix, andX ⊂ RN and Y ⊂ RM are convex
sets.

The formulation (1) is extremely useful for solving inverse problems involving the `1 norm and
Total-Variation (TV). Many common minimization problems have a simple saddle-point form in-
cluding image segmentation, TVL1 minimization, and general linear programing.

The Primal-Dual Hybrid Gradient (PDHG) [1, 2] solves (1) efficiently by addressing the terms f
and g separately. One of the primary difficulties with PDHG is that it relies on step-size parameters
that must be carefully chosen by the user. The speed of the method depends heavily on the choice
of these parameters, and there is often no intuitive way to choose them.

We present practical adaptive schemes that optimize the convergence of PDHG automatically as the
problem is solved. The new methods are not only easier to use in practice, but also result in faster
convergence than conventional schemes. After introducing the adaptive methods, we prove new
theoretical results that guarantee convergence of PDHG under very general circumstances, including
adaptive stepsizes.

2 The Primal-Dual Hybrid Gradient Method

The PDHG method [3, 1, 4, 2] is listed in Algorithm 1. In steps (2-3), the method decreases the
energy (1) in x by first taking a gradient descent step with respect to the inner product term in (1),
and then taking a “backward” or proximal step for f . In steps (5-6), the energy (1) is increased
by changing y. A gradient ascent step is taken with respect to the inner product term, and then a
backward step is taken with respect to g.
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Algorithm 1 Basic PDHG
Require: x0 ∈ RN , y0 ∈ RM , σk, τk > 0

1: while Not Converged do
2: x̂k+1 = xk − τkAT yk . Forward descent
3: xk+1 = arg minx∈X f(x) + 1

2τk
‖x− x̂k+1‖2 . Backward descent

4: x̄k+1 = xk+1 + (xk+1 − xk) . Prediction step
5: ŷk+1 = yk + σkAx̄k+1 . Forward ascent
6: yk+1 = arg miny∈Y g(y) + 1

2σk
‖y − ŷk+1‖2 . Backward ascent

7: end while

Steps 3 and 6 of Algorithm 1 can be written compactly using proximal operators of f/g :

JτF (x̂) = arg min
x∈X

f(x) +
1

2τ
‖x− x̂‖2 (2)

where F = ∂f. Algorithm 1 is convergent with constant stepsizes satisfying στ < 1
ρ(ATA)

[1,
2, 4]. However, PDHG does not converge when non-constant stepsizes are used, even in the case
that σkτk < 1

ρ(ATA)
. In this article, we identify the specific stepsize conditions that guarantee

convergence and propose practical adaptive methods satisfying these conditions.

3 Common Saddle-Point Problems

While the applications of saddle-point problems are vast, we focus here on several problems from
statistics, image processing and signal processing.

3.1 Total-Variation Denoising

A common application of Total-Variation (TV) is the Rudin-Osher-Fatemi (ROF) denoising model
[5]:

min
x
|∇x|+ µ

2
‖x− f‖2. (3)

A noise contaminated image f is denoised by recovering an image x that is similar to y in the
`2-sense, while having small TV.

The TV term can be written as a maximization over the “dual” variable y ∈ R2×N , where the image
x ∈ RN has N pixels. The equation (3) then becomes

max
y∈C∞

min
x

µ

2
‖x− f‖2 + y · ∇x (4)

which is clearly of the form (1). To apply Algorithm 1, we need efficient solutions to the sub-
problems in steps 3 and 6, which can be written

JτF (x̂) = arg min
x

µ

2
‖x− f‖2 +

1

2τ
‖x− x̂‖2 =

τ

τµ+ 1
(µf +

1

τ
x̂) (5)

JσG(ŷ) = arg min
y∈C∞

1

2σ
‖y − ŷ‖2 =

(
yi

max{yi, 1}

)M
i=1

. (6)

3.2 Scaled Lasso

The square-root lasso [6] (or equivalently the scaled lasso [7]) is a variable selection regression that
obtains sparse solutions to systems of linear equations. Given a data matrix D and a vector b, a
sparse solution to the system Dx = b is obtained by solving

min
x
|x|+ λ‖Dx− b‖ (7)

Note that the `2 term in (7) is not squared as in the conventional lasso model. Using techniques from
Section 3.1 we can write this energy as

max
‖y1‖∞≤1,‖y2‖≤λ

min〈y1, x〉+ 〈y2, Dx− b〉 (8)

which can be solved using PDHG.
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3.3 Other Applications

We refer the reader to [8] for a discussion of various saddle-point formulations including compressed
sensing for single-pixel cameras, TVL1 image restoration, image segmentation, `∞ minimization,
and linear programming.

4 Convergence Theory

We begin by defining the following constants which quantify the relative change between stepsizes:

δk = min

{
τk+1

τk
,
σk+1

σk
, 1

}
, and φk = 1− δk ≥ 0. (9)

We can now state our main result. For a proof, see [8].

Theorem: Algorithm 1 converges if the following three requirements hold:
A The sequences {τk} and {σk} are bounded.

B The sequence {φk} is summable, i.e.
∑
k≥0 φk <∞.

C One of the following two conditions is met:

C1 There is a constant L such that for all k > 0

τkσk < L < ρ(ATA)−1.

C2 Either X or Y is bounded, and there is a
constant c ∈ (0, 1) such that for all k > 0

cσk‖xk+1−xk‖2+cτk‖yk+1−yk‖2 ≥ 2τkσk〈A(xk+1−xk), yk+1−yk〉.

Two conditions must always hold to guarantee convergence: A ) The stepsizes must remain bounded,
and B ) the sequence {φi} must be summable. Together, these conditions ensure that the steps sizes
do not oscillate too wildly as k gets large. In addition, either C1 or C2 must hold. When we know
the spectral radius ofATA, we can use condition C1 to enforce that the method is stable. Otherwise,
the backtracking condition C2 can be used to enforce stability. It can be easily seen that Algorithm
2 satisfies the above convergence conditions. This is elaborated in [8].

4.1 Adaptive PDHG

The first adaptive method is listed in Algorithm 2. The loop in Algorithm 2 begins with a standard
PDHG step. Steps 4 and 5 compute the primal and dual residuals. If the primal residual is large
compared to the dual, τ is increased by a factor of (1−αk)−1, and the σ decreased by (1−αk). If the
primal residual is small compared to the dual, then τ is decreased and σ is increased. The stepsizes
are only updated if the residuals differ by a factor greater then ∆. The sequence {αk} controls the
adaptivity level. When we update τ /σ, we multiply α by η < 1. In this way the adaptivity decreases
over time and thus fulfills condition (B) of our convergence theorem.

We have found that a0 = 0.5, ∆ = 1.5, and η = 0.95 is a fairly robust choice for the constants in
Algorithm 2.

4.2 Backtracking PDHG

When ‖A‖ is unknown, the backtracking condition C2 can be used to enforce stability. See [8].

5 Numerical Results
We test the adaptive PDHG method using the ROF denoising problem (3). Numerical results for
additional applications from imaging and machine learning are presented in [8]. We consider four
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Algorithm 2 Adaptive PDHG
Require: x0 ∈ RN , y0 ∈ RM , σ0τ0 < ρ(ATA)−1, (α0, η) ∈ (0, 1)2,∆ > 1, s > 0

1: while pk, dk > tolerance do
2: xk+1 = JτkF (xk − τkAT yk) . Begin with normal PDHG
3: yk+1 = JσkG(yk + σkA(2xk+1 − xk))
4: pk+1 = |(xk − xk+1)/τk −AT (yk − yk+1)| . Compute primal residual
5: dk+1 = |(yk − yk+1)/σk −A(xk − xk+1)| . Compute dual residual
6: if pk+1 > sdk+1∆ then . If primal residual is large...
7: τk+1 = τk/(1− αk) . Increase primal stepsize
8: σk+1 = σk(1− αk) . Decrease dual stepsize
9: αk+1 = αkη . Decrease adaptivity level

10: end if
11: if pk+1 < sdk+1/∆ then . If dual residual is large...
12: τk+1 = τk(1− αk) . Decrease primal stepsize
13: σk+1 = σk/(1− αk) . Increase dual stepsize
14: αk+1 = αkη . Decrease adaptivity level
15: end if
16: if sdk+1/∆ ≤ pk+1 ≤ sdk+1∆ then . If residuals are similar...
17: τk+1 = τk,σk+1 = σk, αk+1 = αk . Leave stepsizes the same
18: end if
19: end while
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Figure 1: (left) Convergence curves for the Rudin-Osher-Fatemi denoising experiment with µ =
0.05. The y-axis displays the difference between the value of the ROF objective function (3) at
the kth iterate and the optimal objective value. (right) Stepsize sequences, {τk}, for both adaptive
schemes.

variants of PDHG. “Adapt:Backtrack” is Algorithm 2 with backtracking. The method “Adapt: τσ =
L” is adaptive PDHG without backtracking. “Const: τ, σ =

√
L” is the non-adaptive method with

τ = σ = ρ(ATA)−
1
2 . “Const: τ -final” refers to the constant-stepsize method, where the stepsizes

are chosen to be the final values of the stepsizes used by “Adapt: τσ = L”. This final method is
meant to demonstrate the performance on PDHG with a stepsize that is customized to the problem
instance at hand, but still non-adaptive. Note the superior performance of the adaptive methods.
Because the optimal stepsize choice depends on the active set (which evolves over time) the adaptive
scheme is even able to out-perform the “tuned” stepsize choice used by “Const: τ -final”.
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