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Abstract

We present the optimization package in the FACTORIE library for machine learn-
ing, graphical models, and natural language processing in Scala. The library is
designed with an eye towards the way practitioners naturally break down the struc-
ture of a learning problem, giving first-class status to, for example, training exam-
ples, update rules, and regularization. It supports flexible mixing and matching
of parameter representation, update rules, loss functions, online-vs-batch training
schedules, and serial-vs-parallel processing.

1 Introduction

Most optimization problems encountered in machine learning fall into two categories: inference, in
which the goal is to make a prediction given a model and some observations, and learning, where
the goal is to parametrize a model so that it generalizes well.

Surprisingly, there are few open source optimization packages that are tuned to solve the specific
family of problems arising from supervised learning (notable exceptions being Theano and Pylearn2

[81).

We present a novel architecture for an optimization package that solves the learning problem, as
implemented in our FACTORIE toolkit for graphical models and machine learning. Since it is used
both for research in machine learning as well as for applied systems, the package has to balance cus-
tomizability and efficiency, allowing users to decide how to deal with parallelism, high-dimensional
data, online vs batch, efficient online regularization, and other concerns. FACTORIE, implemented
in the Scala programming language [17]], is open-source under the Apache 2.0 license.

Formally, the goal of supervised learning is to find a parameter vector § with low generalization
error with respect to a distribution over data examples (z, y):

0* = argmin E[¢(z,y,0)]. (1
6

Many learning algorithms find such a # by minimizing regularized loss over the observed training
data {(zi,y:)}:

0* = argmin » £(x;,y:,0) + R(6), 2)
3 Z( yi,0) + R(0) (

where the regularizer R penalizes model complexity and encourages generalization. Because data is
often high-dimensional and sparse, most practical algorithms are gradient-based and avoid explicitly
computing higher-order derivatives of the objective function.

While each learning problem involves a specific loss function ¢ and its gradient, all algorithms
share common concerns that correspond to different parts of equation : how to share work



between threads and aggregate losses and gradients over examples (the 3J), how to incorporate the
regularizer R into the solution, and how to efficiently compute scores and update the parameters
0 during learning. A well-designed optimization library should implement strategies for handling
these issues somewhat independently, and allow for arbitrary mixing and overriding as desired by
the user.

2 Design
We represent the components of equation (2)) with the following interfaces:

e Weights are mutable slots containing parameter tensors #. Optimizers can select appropriate
representations for the weights, allowing e.g. efficient online regularization or averaging.

e Examples use Weights to calculate the gradient of the loss function ¢ for a particular labeled
training instance.

e Optimizers take a gradient and use it to update Weights, optionally applying regularization
R.

e Trainers coordinate between sets of Examples and Optimizers, deciding how many Exam-
ples to evaluate between calls to the Optimizer, and in which threads to evaluate Examples
and call the Optimizer.

3 Functionality

FACTORIE implements many state-of-the-art optimization algorithms, including LBFGS, conjugate
gradient, and many online algorithms, both regularized and unregularized. The regularized online
algorithms include variants of Pegasos [20], regularized dual averaging [22], and AdaGrad dual
averaging [4]. The unregularized algorithms include variants of MIRA and passive-aggressive algo-
rithms [3]], exponentiated gradient, and the averaged perceptron [7], and most of these are compatible
with adaptive learning rates from the AdaGrad algorithm [4] and parameter averaging. An exam-
ple of the power of this approach is our support for combining MIRA-style updates with AdaGrad’s
adaptive learning rates, an approach which is not mentioned in the literature but gives good empirical
performance.

FACTORIE implements three batch Trainers: a single-core trainer, a parallel trainer with a single
shared gradient vector and a parallel trainer with per-thread gradients. Each of the parallel strategies
can be optimal in different scenarios, depending on the relative cost of computing a gradient on one
example versus adding it to the single shared gradient vector. Likewise, there are many online train-
ers, including a single-core trainer, a parallel trainer which locks each weight tensor individually, a
trainer which locks the optimizer (but not the weights tensor), and a fully hogwild [16]] trainer which
uses no locks.

It is important that Weights are slots rather than mutable tensors, because the optimization package
must be able to swap in alternate tensor implementations in order to efficiently implement some
optimization algorithms. An example is using a combination of a tensor and a scalar mutliplier for
implementing /o regularization, Pegasos, or exponentiated gradient. Algorithms such as RDA [22]
require storing a tensor of dual averages and shrinking and thresholding this tensor on the fly when
computing scores.

Our framework is designed to be not only customizable but also user-friendly. To this end, FACTO-
RIE provides helper functions to train models and classifiers without requiring that the user explicitly
selects examples and optimizers, but allowing customization as-needed. The level of parallelism can
also always be controlled by the user, which is helpful in shared computing environments such as
grid engines.

All of this learning infrastructure is automatically available for any Example a user can implement.
FACTORIE also has predefined Examples for many common learning problems, such as classifica-
tion, regression, learning to rank, matrix factorization, structured linear models with arbitrary infer-
ence (including CRE, structured perceptron, structured SVM), pseudolikelihood, and many others.



4 Related work

Most machine learning libraries, such as scikit-learn [[19], Apache Mahout [6]], OpenNLP [1], Weka
[LO], Liblinear [5]], Leon Bottou’s SGD package [2], and CRFSuite [[18] provide efficient specialized
implementations of some models. These implementations tend to be disconnected, do not share
much learning code between them, and are not built on top of an optimization package for arbitrary
loss functions.

A few libraries, however, do provide generic optimization infrastructures designed for machine
learning. Unlike FACTORIE, they take a more black-box approach. Optimizers are usually unaware
of the way the loss breaks down over examples, delegating the choice between batch and online
optimization to the implementation of the loss function. Weights and gradients are represented con-
cretely as sparse or dense arrays of floating point numbers, which prohibits the implementation of
regularized stochastic algorithms without modifying the way that models compute scores.

Pylearn2 [§]] is an example of a machine learning library with a generic optimization infrastructure.
It has a generic model interface, and allows users to choose between many pre-packaged batch and
online optimizers. Pylearn2 does not distinguish between Trainers and Optimizers. It is not agnostic
to the representation for the Weights, forcing models to be aware of representations designed for
specific learning algorithms. On the other hand, Pylearn2 can transparently delegate optimization to
the GPU, which FACTORIE does not support.

The MALLET package for conditional random fields and classifiers [15] has an interface for generic
optimization methods, but it does not support the efficient implementation of online algorithms, and
it also does not distinguish between Trainers and Optimizers.

ScalaNLP [9] has a very general framework for linear algebra and optimization, but has not so far
been able to make this efficient and relies on special-purpose solvers such as Liblinear to practically
solve e.g. classification problems.

Vowpal Wabbit (VW) [13]] falls into neither category. At its core, VW is a solver for binary clas-
sification problems. It solves more structured problems, such as multiclass classification, neural
networks, or structured prediction, using reductions to binary classification. However, there is no
functionality for directly optimizing arbitrary loss functions.

5 Benchmarks

While flexibility is a goal of the FACTORIE optimization package, so is efficiency. We measure its
performance on two simple yet representative benchmarks: binary classification in the relatively
large RCV1 dataset, and structured prediction in the CoNLL 2000 chunking shared task [2, [21]].

For each task we report the following metrics. We report two accuracy numbers: when applicable,
accuracy after the first pass through the data, as well as final accuracy of the trained model. We
measure time both to do one pass through each task’s training set as well as total time, which
includes multiple passes over the training set, reading the data, and measuring accuracy.

The two timing numbers are necessary because the benchmarked packages vary greatly in their
stopping criteria and speed of parsing the data files and extracting features. While overall time to
learn a model is a good metric for real-world applications, time to perform one iteration is a better
measure of optimization performance.

All experiments are run on a single core of a circa 2013 MacBook Pro. All hyperparameters are left
to their default values.

5.1 Binary classification

For this experiment we follow the setup of Bottou et al [2] and use a version of the RCV1 dataset
[14] which has been processed into a binary classification task for the class CCAT. The training file
is 423mb long in gzipped svmlight [11] format, and is comprised of over 781k training examples.
The test file is 12mb long and has 23k test examples. FACTORIE, Bottou SGD, and MALLET
optimize the log loss. Scikit-learn optimizes the hinge loss. VW optimizes a squared loss variant.



Software | Algorithm [ Acc. (I pass) [ Time (I pass) | Acc. (final) [ Time (final) |

AdaGrad RDA SGD 93.05 1.89 9434 6733
L2 SGD 94.26 1.46 94.57 74.99
FACTORIE | | prGs N/A 1.07 94.79 101.30
Avg. SGD 94.69 1.66 94.80 65.84
W Ada-Inv-Norm SGD* 94.23 9.03 94.23 14.78
LBFGS* N/A 10.07 94.72 217.17
Bottou SGD | Log SGD 94.40 0.25 94.82 1127
MALLET | LBEGS N/A 093 94.59 4527
ikitloam | SCD 93.94 0.1 93.99 20531
Liblinear SVM N/A 13.73 94.77 216.20

Table 1: Results for the binary classification benchmark

| Software | Algorithm Il Acc. (1 pass) | Time (1 pass) [ Acc. (final) | Time (final) |
AdaGrad RDA SGD 95.65 22.68 95.91 76.88
Avg. SGD* 95.45 6.98 95.85 30.38
FACTORIE | 1556 95.01 11.63 95.52 44.02
LBFGS N/A 9.20 96.11 1845.81
Avg. Perceptron 95.34 1.07 95.717 12.42
Bottou SGD L2 SGD 95.26 7.78 95.93 145.26
Avg. 1.2 SGD 95.27 8.37 96.00 140.57
L2 SGD 95.01 1.09 95.97 278.42
CRFSuite Avg. Perceptron 95.28 0.57 95.75 68.18
LBFGS N/A 0.92 95.99 179.81
MALLET LBFGS N/A 4293 95.85 6396.70

Table 2: Results for the chunking benchmark

Table [T| shows the timing and accuracy numbers for this experiment. The results indicate that FAC-
TORIE is competitive even with highly optimized native code libraries like VW and Bottou SGD.
Note that VW’s per-iteration performance necessarily includes time to read the data cache, as it
does not store examples in memory. Also note that MALLET does not support reading files in the
svmlight format, instead parsing its own binary format, which saves a substantial amount of time.

5.2 Chunking

For this experiment we train linear-chain conditional random fields [12]] on the data from the CoNLL
2000 chunking shared task [21]]. All libraries use feature templates obtained from the CRFSuite
benchmarks [18]]. The training file is 597kb long in gzipped text format, with 8936 training exam-
ples, and the test file is 136kb long gzipped with 2012 test examples. Most algorithms optimize
{5-regularized log loss and compute gradients with the forward-backward algorithm, except for the
perceptron variants that optimize perceptron loss and compute gradients with Viterbi, and FACTO-
RIE ’s averaged SGD which uses unregularized log loss.

The results indicate FACTORIE is competitive with special-purpose C++ libraries even when us-
ing its generic optimization routines. CRFSuite in particular is considered to be the fastest CRF
implementation, so our performance is very impressive in this light.

6 Conclusion

We present the design of the FACTORIE optimization package. We show how it can be used to effi-
ciently implement modular and reusable learning algorithms. The package separates concerns such
as threading and batching from both the gradient-computation code and the optimizer code. Our
architecture allows users to choose between many algorithms with different performance character-
istics, and replace individual components as they see fit. We show in some simple benchmarks that
this generality does not come at a loss of efficiency.
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