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Abstract

Stochastic coordinate descent, due to its practicality and efficiency, is increasingly
popular in machine learning and signal processing communities as it has proven
successful in several large-scale optimization problems , such as l1 regularized
regression, Support Vector Machine, to name a few. In this paper, we consider
a composite problem where the nonsmoothness has a general structure that is
compatible with a coordinate partition, and we solve the nonsmooth optimization
problem using a sequence of smooth approximations. In particular, we extend
Nesterov’s estimate sequence technique by incorporating smooth approximation
and coordinate randomization. By studying the effect of smooth approximation,
we develop rules for selecting smooth approximations that not only guarantee the
algorithm’s convergence but also provide better convergence rate than the subgra-
dient black-box model. Specifically, we obtain the convergence rate of O

(
1
K

)
for nonsmooth convex functions and O

(
1
K2

)
for strongly convex functions. The

convergence analysis developed in this paper and the results, to the best of our
knowledge, have not been shown previously for stochastic coordinate descent.

1 Introduction
In this paper, we are interested in applying stochastic coordinate descent to solve the optimization
of a (convex) composite function f(x) = h(x) + g(x) where the objective f(x) contains two parts:
h(x) is differentiable with Lipschitz continuous gradient and g(x) is a general convex nonsmooth
function (satisfying conditions specified later). Although this problem has been investigated quite
extensively in the literature, none of the earlier work has studied the problem from the perspective of
stochastic coordinate descent. For huge-scale optimization problems that are increasingly common
in machine learning and other application domains, coordinate descent is often the only available
method due to its practicality, and accordingly, it is experiencing a resurgence of interest recently,
e.g., [Nes10]. In this context, we propose an accelerated coordinate-descent scheme for minimizing
the convex composite function f(x) based on the idea of sequential coordinate smooth approxima-
tion. Specifically, we introduce a sequence gµk(x) of increasingly-accurate smooth approximations
of g(x) such that the smoothing parameter µk indexed by the iteration counter k is a nonnegative real
number converging to zero as k →∞. At each iteration, our scheme uses the smooth approximation
fµk(x) = h(x) + gµk(x) as the surrogate and with suitable assumptions on the form of gµk , accel-
erated coordinate descent scheme can be developed for the smooth approximation sequence fk(x).
Furthermore, the sequential smoothing can be incorporated into the estimate sequence framework
of Nesterov for analyzing the convergence complexity, with the smoothing parameter µk playing
the crucial role of balancing the degree of smoothing and the rate of convergence. We study differ-
ent smoothing strategies in terms of using different sequences of µk, and with appropriately-chosen
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smoothing parameters, the proposed scheme provides the (worst-case) complexity of O
(

1
K

)
when

f is convex, and O
(

1
K2

)
when f is strongly convex. To the best of our knowledge, this is the

first theoretical convergence analysis of coordinate descent using the exact coordinate gradient and
randomized coordinate selection on nonsmooth problems.

Related Work: When the non-smooth component g(x) is absent or possesses a simple struc-
ture (such as in the lasso objective), Nestervo’s celebrated accelerated gradient methods [Nes83],
[Nes03], [Nes12], [BT09] are known to be optimal in terms of the worst case complexity. In gen-
eral, the addition of a nonsmooth convex function makes the convergence complexity worse than
in the corresponding smooth case, and only subgradient methods have been known to converge. A
well-known technique for handling a nonsmooth function is by solving a modified problem using
its smooth approximation. In [Nes05b], it is shown that if g(x) has a certain structure, optimiza-
tion of f(x) can still take advantage of fast gradient schemes on the approximated smooth problem,
with an achievable convergence rate that is better than the subgradient method by an order of mag-
nitude. Smooth approximation in the primal-dual context is also studied in [Nes05a], providing
further speed-ups for strongly convex functions. The work in [BT12] further extends the realm of
”smoothable” functions, and it demonstrates the benefit of smooth approximations (with a fast gra-
dient scheme) for several interesting problems. However, we remark that these first-order methods
require the full-knowledge of the gradient and therefore, they and their convergence guarantees do
not admit an immediate extension to methods using coordinate descent. Furthermore, smooth ap-
proximation does not seem to have been considered from the sequential viewpoint (as we do here),
except perhaps in [Nes05a] where a fixed sequence of smoothing parameters µk is suggested.

2 Algorithm and Convergence Analysis
The optimization problem of interest is

min
x∈X

f(x) = h(x) + g(x). (1)

Our focus will be on unconstrained problems with X = Rd for some d > 0. Let X = X1 × X2 ×
. . . × Xp denote a Cartesian decomposition of X , and it correspondingly defines a partition of the
coordinates of X . For notational simplicity, we will use Xi to denote both the Cartesian factor and
its associated coordinate block. In (1), h(x) is differentiable and σ-strongly convex with respect to
the Euclidean norm. [We should emphasize that in general we don’t assume strong convexity of h,
so σ (the constant in front of ‖x−x′‖2) can be 0.]. Furthermore, we assume that the gradient of h(x)
is Lipschitz continuous with constant Lh and its partial gradient ∇ih with respect to the coordinate
block Xi is also Lipschitz continuous with constant Lhi . To facilitate the analysis, we assume the
nonsmooth component f(x) can be approximated by smooth functions using the following notion:

Definition 1 (Sequential Block Coordinate Smooth Approximation:) Let µ = {µ1, ...µk, ..} de-
note a decreasing sequence of non-negative real numbers such that µk → 0 as k → ∞ and
B = {β1, ..., βp},L = {L1, L2, . . . , Lp}, two sets of p positive real numbers. We say the function
f is (δ,B,L)-block coordinate smoothable, and {fµk} is a sequential Block Coordinate Smoothing
Approximation of f(x) if the following conditions are satisfied for some δ > 0:

1. (Monotonicity) For each x ∈ X , fµ1
(x), fµ2

(x), .... form a decreasing sequence with a
lower bound given by f(x). Specifically, ∀x ∈ X , fµ1

(x) > fµ2
(x) > . . . > fµk(x) >

. . . > f(x).
2. fµ(x) 6 f(x) + δµ, for every x ∈ X , µ.
3. For each fµk , its partial gradient∇ifµk with respect to the coordinate blockXi is Lipschitz

continuous with constant L(k)
i = Li + βi

µk
.

We note that since the sequence {µk} is decreasing, fµk converges uniformly to f on any compact
subset of X [also by (2)], and the sequence fµk always approximates f from above. This peculiar
feature is required for the later convergence analysis using Nesterov’s estimate sequence technique,
and in this regard, our smoothing scheme is different from those discussed in [BT12] that only
require fµk to lie within a band around f . In particular, it can also be considered as a special
extension of the smoothing paradigm discussed in [BT12] to block-wise coordinate setting.

An Example: A quick example of (δ,B,L) -sequential block coordinate smooth approximation
of f(x) can be constructed from the smoothing example given in [Nes05b]. In this example, the
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nonsmooth function g(x) assumes a special form g(x) = maxu∈U{〈Ax, u〉 − φ(u)} for some
linear map A : Rd → Rq and a convex function φ(u) defined on a bounded subset U ⊂ Rq . This
particular type of g appears in a variety of problems that are important in machine learning and signal
processing, e.g, the well-known hinge loss (SVM), quantile regression and TV-norm denoising. By
Dansker’s theorem, nonsmoothness of g(x) is essentially equivalent to the non-uniqueness of the
global optimal solution of maxu∈U{〈Ax, u〉 − φ(u)}. Therefore, a simple smoothing method is
to introduce an additional strongly convex term to ensure the uniqueness of the optimal solution:
g̃µ = maxu∈U{〈Ax, u〉−φ(u)−µd(u)}, with the strongly convex function d(u) satisfying d(u) >
1
2‖u‖

2. Define f̃µ(x) = h(x) + g̃µ(x). It follows that the gradient of f̃µ is Lipschitz continuous

with constant Lh + ‖A‖2
µ . To account for the monotonicity condition, we modify f̃µ by adding a

positive constant linear in µ:
fµ = h(x) + max

u∈U
{〈Ax, u〉 − φ(u)− µ [d(u)−max

v∈U
d(v)] }. (2)

The extra term does not change the differentiability of fµ, but ensures the monotonicity of fµ(·) as
a function of µ for µ > 0, In addition, it can be shown that fµ(x) ≤ f(x) + µmaxv∈U d(v). More
importantly, because of the above maximization structure, we can exploit the differentiability of fµ
coordinate-wise. In particular, for a decreasing sequence µ = {µ1, µ2, ...} and βi = ‖A‖1i,2 =
maxx,y{〈Aix, y〉, ‖x‖Xi = 1, ‖y‖U = 1, x ∈ X , y ∈ U}, i = 1, ..., p, the functions fµk form a
(δ,B,L)-sequential block coordinate smooth approximation of f .

Optimization Algorithm: The algorithm presented here is a simple and efficient extension of
Nesterov’s method in [Nes10] that applies the accelerated first-order method to coordinate descent,
and the detail of the algorithm is outlined below. We use fk as a shorthand notation for fµk , and
Li for Lhi ,L

(k)
i = Li + βi

µk
. In coordinate selection, we adopt stochastic sampling of coordinates

with probability proportional to the scale of the corresponding (estimated) Lipschitz constant of
fk: {pi = L

(k)
i /S(k)}, where S(k) is the normalization factor. The extension to other sampling

schemes such as uniform sampling will be considered in future work. The algorithm maintains two
sequences of variables {xk}, {yk}, {xk} is updated using the block coordinate gradient on some
randomly sampled coordinate of yk. Meanwhile, {yk} is interpolated from the previous updates,
controlled by a set of carefully chosen parameters {αk, γk}. This is in the spirit of Nesterov’s
accelerated gradient method. In addition, since f is nonsmooth, the block coordinate gradient of the
smooth surrogate function fk is applied to construct the convergence sequence. As a trade-off, the
error of the smooth approximation affects the convergence rate and it. explains why the convergence
rate is worse than results for optimizing smooth functions. Recent work in [Nes10] [LX13], [LS13]
extend the concept of estimate sequence to randomized settings, to accelerate coordinate descent.
In the context of these very recent developments, our work can be considered as an extension that
incorporates smoothing techniques under the coordinate descent framework. The main difference
is that we maintain a non-increasing sequence of positive real variables {µk}k=1,2,...K, and use the
associated sequence of smooth functions {fµk}k to approximate f in a gradually-more-accurate
manner. The convergence analysis of the algorithm in terms of the sequence {µk} and the expected
value Ef(xK+1) at K + 1-step is summarized in the following theorem (assuming an appropriately
chosen (δ,B,L)-block coordinate smoothing sequence).

Theorem 1 For the optimization problem defined in (1), if f(x) is a non-strongly convex function

with σ = 0, let αk = 2
k+3 , µk = c

(k+2) for c =
√

2pβ0

δ ‖x0 − x
∗‖, γ0 = 4p

(
L0 + β0

c (K + 2)
)

,
we have

E [f(xK+1)]− f∗ ≤ 2
√

2pδβ0 ‖x0 − x∗‖
(K + 3)

+
2 (φ0 (x0)− f (x∗)) + 4pL0 ‖x0 − x∗‖2

(K + 3) (K + 2)
.

If h(x) is a strongly convex function with σ > 0, and let αk = 3
k+4 , c = 18pβ0

σ , µk = c
(k+3)(k+2) ,

and γ0 = 3pL0 (K + 2) + σ, we have

E [f(xK+1)]−f∗ ≤ 54δpβ0
σ (K + 4) (K + 3)

+
9pL0 ‖x0 − x∗‖2

(K + 4) (K + 3)
+

6 [φ0 (x0)− f (x∗)] + 3σ ‖x0 − x∗‖2

(K + 4) (K + 3) (K + 2)
.

The convergence analysis presented in the theorem is based on Nesterov’s method of estimate se-
quences [Nes03][LX13]. A crucial estimate in the analysis is the inequality Ef(xK+1)− f(x∗) ≤
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Algorithm 1: Stochastic Coordinate Smooth Approximation
Input : A (δ,B,L)-block-coordinate smoothable function f and K the total number of iterations.
Initialize γ0, α0, L0 =

∑p
j=1 Lj and β0 =

∑p
i βi, x0, y0.

for k = 0, 1, 2, . . . ,K do
Set µk (as a non-decreasing sequence) and its associated smooth approximation fk(·).
For j = 1, . . . , p, set L(k)

j = Lj +
βj
µk

, S(k) =
∑
L
(k)
j , L(k) = [S(k)]2/minj L

(k)
j .

Sample i ∈ {1, 2, . . . p} with prob(i = j) = L
(k)
j /S(k).

Choose γk+1, αk such that γk+1 = (1− αk)γk + αkσ ≥ L(k)α2
k and let θk+1 = αk+1γk+1

γk+1+αk+1σ
.

Set
xk+1 = yk −

1

Li
∇ifk(yk), (3)

yk+1 = xk+1 + θk+1

(
1− αk
αk

(xk+1 − xk) +
1

αkL
(k)
i

(
1− α2

kS
(k)

γk+1

)
∇ifk(yk)

)
. (4)

output: xK+1

λK+1 (φ0(x0) − f(x∗)) that bounds the gap Ef(xK+1) − f(x∗) from above (where φ0(x) is a
function in X that can be set to f0), and the convergence rate can be extracted from the sequence
λk. For our analysis, the upper bound on the gap now acquires an important residual term ∆K+1,
Ef(xK+1) − f(x∗) ≤ λK+1 (φ0(x∗) − f(x∗)) + ∆K+1, that depends on the smoothing parame-
ters {µk}. The analysis is centered on balancing the trade off between∆K+1 and λK+1in showing
that — with an appropriately-chosen sequence {µk} — the desired convergence rate can still be
extracted from the sequence λk.

For non-strongly convex functions, our complexity bound is dominated by theO( 1
K )-order term that

is essentially equivalent to the asymptotic error (approximation accuracy) of the smoothing sequence
with Lipschitz constant β0. For strongly convex functions, the additional information σ provides a
more accurate approximation with error in the order of O( 1

K2 ), and by our choice of parameters,
the optimization on the smooth part is also of the same order. We remark that our complexity result
agrees with the result in [Nes05a] but is proved in a more general context without explicit depen-
dence on duality. A related but different approach is presented in [BT12] where the authors consider
the class of smoothable functions and claim that for convex nonsmooth problems with a fixed smooth
approximation (using a smoothing constant µ depending on the total iteration number K), one can
always apply any accelerated scheme as the black-box toolbox to obtain accelerated convergence
over the subgradient method. However, our analysis together with Nesterov’s result [Nes05a] sug-
gest that this approach may be suboptimal (yielding only Ω( 1

K2 )) for strongly convex functions with
an adaptive smoothing sequence needed to attain the faster convergence of O( 1

K2 ). More precisely,
let µ ≡ 1

Kγ for some γ < 2. The approximation error of the smoothing is asymptotically O
(

1
Kγ

)
.

On the other hand, if we fix µK = O( 1
K2 ), applying a first-order accelerated scheme to the problem

of minimizing fµ cannot go beyond the complexity rate of O
((

1−
√

σ
L

)K)
. In this case, the asso-

ciated Lipschitz constant is L = O( 1
µ ) = O(K2) and the optimization error for fµ is asymptotically

on the order of
lim
K→∞

(
1−O

(
1

K

))K
= O(1). (5)

This suggests that when a smooth function with a large Lipschitz constant (i.e., a nearly-singular
smooth function) is used as an approximation, even accelerated methods may not guarantee conver-
gence in the first K iterations.

3 Conclusion
In this paper, we have employed smoothing techniques within the coordinate descent framework and
coupled it to Nesterov’s accelerated scheme to significantly improve on the black-box subgradient
model. This results in an efficient stochastic coordinate descent algorithm for optimizing nonsmooth
convex functions. Our approach is immediately applicable to well-known optimization problems
involving the SVM hinge loss, quantile regression, TV-norm denoising and others. In the immediate
future, we plan to specialize our approach to obtain efficient algorithms for solving these and other
similar nonsmooth convex optimization problems in machine learning and image processing.
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