
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

“God Doesn’t Play Dice with the World”: Time to
Move Beyond i.i.d. Assumption

Anonymous Author(s)
Affiliation
Address
email

1 Introduction

We consider the general problem of online optimization with the bandit feedback when, given an
arm, its corresponding reward is not an i.i.d. random variable. The problem arises naturally in many
interactive real-world settings such as online auctions, adaptive routing and online games, where the
reward, at each time step, may depend not only on the latest arm pull but also on the entire history
of previous observations.

Let X be a space of arms. We consider the optimization problem as an interaction between the
decision maker and the environment: at each time step t, the decision maker pulls an arm Xt in
X . The environment in return provides the learner with a reward Yt ∈ [0, 1] which depends on
the history of previous rewards and pulls. We note the mean-payoff function f(x) as the expected
time-average of the received rewards while we pull arm x infinitely many times:

f(x,H0) = lim
n→+∞

E

[
1

n

n∑
t=1

Yt

∣∣∣∣∣X1:n = x,H0

]
,

where X1:n is the history of arm pulls from t = 1 to t = n andH0 is the history of all observations
prior to t = 1.1 It is not difficult to prove that under the mixing assumption, which we introduce
later in Sec. 2, the above limit always exists and it is independent of H0. So from now on we make
use of the shorthand notation f(x) instead of f(x,H0). We also define the regret Rn w.r.t. the
maximum payoff as follows:

Rn = n sup
x∈X

f(x)−
n∑

t=1

Yt

The goal of decision maker is to choose the sequence of arms X1, X2, . . . , Xn such that the regret
Rn becomes as small as possible. To solve this problem, we rely on the recent advances in the
field of continuum-armed bandit (Valko et al., 2013; Bubeck et al., 2011a; Kleinberg et al., 2008;
Auer et al., 2007). Those works address the problem of stochastic non-convex optimization under
the assumption that given Xt the reward Yt is independent of all other random events. Here we
relax this assumption and introduce a new algorithm called High Confidence Tree (HCT) which
also applies to the case of dependent Yts. Similar to the HOO algorithm of Bubeck et al. (2011a),
HCT makes use of a covering binary tree for exploring X . Furthermore, our algorithm relies on the
celebrated optimism in the face of uncertainty principle to make balance between exploration and
exploitation: It maintains upper bounds on the values of f(x) for all regions of X and zoom into the
region with the highest upper bound on f(x) (optimistic node) by expanding its leaves. The main
new idea, which allows HCT to handle non-i.i.d. rewards, is based on the observation that one only
should expand an optimistic node when the algorithm achieves an accurate estimate of f(x), with
high confidence, for every leaf of the tree. Until that moment the algorithm may reside with the
corresponding arm of the current optimistic node. In fact to achieve the optimal rate the accuracy
of the estimates needs to grow exponentially with the depth of the tree, which also implies that

1Here we let negative values for time steps.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

the number of pulls for the optimistic node should increase exponentially with the depth. The fact
that the number of pulls increases exponentially with the depth prevents the algorithm from pulling
too many different arms which is essential to achieve a sub-linear regret in the case of dependent
rewards.2

We prove that under some mild mixing assumption HCT can achieve a regret of Õ(n(d+1)/(d+2))
where d is the near-optimality dimension of the mean-payoff function (see Bubeck et al., 2011a,
for the definition of near-optimality dimension). This result matches those of HOO (Bubeck et al.,
2011a) and zooming algorithm (Kleinberg et al., 2008) in terms of dependency on n and d. However
our results covers a more general setting of dependent rewards as opposed to the bounds of HOO and
zooming algorithm which only apply to i.i.d. setting. Also, one one show that due to exponential
growth in the number of pulls the maximum depth of tree in HCT is no more than O(log(n))
which also implies that the computational complexity of HCT is at maximum O(n log(n)). This is
an important observation since HCT achieves this linearithmic computational complexity without
using any truncation or doubling trick which is required for the fast version of HOO algorithm.
Finally, HCT also has a very favorable space requirement which makes it a suitable choice for
online learning with big data. In fact one can show that in the case of benign mean-payoff function
where the near-optimality dimension is 0 the space requirement of HCT is of order O(log(n)). This
is an improvement on HOO algorithm which, even with truncation, still may need O(n) memory
space regardless of the difficulty of optimization problem.

2 Background

In this section we briefly describe the assumptions needed for HCT.

2.1 Statistical Assumption

In this extended abstract we make no restrictive statistical assumption, such as Markov property, on
the of dependency of observations on each other. In fact our results apply to a rather general setting
where the reward Yt may depend on the entire history of all previous observations. In that sense our
approach can be used to solve any optimization problem with dependent observations as long as the
following mixing assumption holds,
Assumption 1 (Mixing sequence of rewards). Let Y1, Y2, . . . , Yn be a sequence of rewards induced
by pulling arm x, n times in a row. Define H0 as the history of all observations prior to Y1. We
assume that there exists some universal constant τ > 0 for which following inequality holds for
every integer n > 0, x ∈ X a: ∣∣∣∣∣E

[
n∑

t=1

Yt

∣∣∣∣∣H0

]
− f(x)

∣∣∣∣∣ ≤ τ
The above mixing assumption is only slightly stronger than the ergodicity assumption, which ar-
guably is the most common assumption for weakly dependent sequences of random variables. In
fact one can show that if Yt belongs to a finite set this two assumptions are equivalent. Moreover
one can easily prove that for any fast mixing ergodic sequence of random variables Assumption 1
always hold.

2.2 Geometrical Assumptions

We begin by a brief description of the binary tree we use for exploring X :3 The covering decision
tree is used to estimate the mean-payoff function over the space X . The main idea is to build an
accurate estimate of f around its maximum fsup , supx∈X f(x) while avoiding the low reward
regions of X as much as possible. To achieve this goal we approximate the mean-payoff function
with an infinite binary tree of covering T . The tree consists of the set of nodes each corresponds
with a a subset of X . Each node is indexed by a pair {(h, i)} where h is the depth of the node and
i is its index among the nodes in depth h (the root node which covers the entire X is indexed by
(0, 1)). By convention (h+1, 2i− 1) and (h+1, 2i) is used to refer to the two children of the node

2Note that, unlike i.i.d. setting which we can switch between arms at any time, in the case of dependent
observations we need a long trajectories of rewards to estimate the expected time-average accurately.

3The reader is referred to Bubeck et al. (2011a) for a more detailed description of the covering tree.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

(h, i). Also the corresponding area of each (h, i) is denoted by Ph,i ⊂ X . These regions must be
measurable and satisfy the following constraints:

P0,1 = X

Ph,i = Ph+1,2i−1 ∪ Ph,2i for allh ≥ 0 and 1 ≤ i ≤ 2h.

In words the sum of the areas of all nodes at any depth h accumulates to the space X . Also there
should be no overlap between the areas of the nodes at any depth h.

We now state our main geometrical assumption regarding the space X and mean-payoff function f :
Assumption 2 (One sided Lipschitzness). Given a dissimilarity l, 4 the diameter of a subset A of X
is defined by diam(A) , supx,y∈A l(x, y). Also the l–open ball of X with radius ε > 0 and center
x ∈ X is defined by B(X , ε) , {y ∈ Y : l(x, y) ≤ ε}. We then assume that there exists ν2, ν1 > 0
and 0 < ρ < 1 such that for all integers h ≥ 0:

(a) diam(Ph,i) ≤ ν1ρh

(b) there exists xoh,i ∈ Ph,i such that Bh,i , B(xoh,i, ν2ρh) ⊂ Ph,i for all i = 1, . . . , 2h.

(c) Bh,i ∩ Bh,j = ∅ for all 1 ≥ i < j ≤ 2h.

(c) Then for all x, y ∈ X the mean-payoff function satisfies
fsup − f(x) ≤ max{fsup − f(y)}, l(x, y)}

3 Algorithm

Similar to HOO algorithm, in HCT the binary tree T keeps tracks of some statistics regarding every
arm xh,i (corresponding arm of node (h, i)). In particular we save the values of empirical mean-
payoff µ̂h,i defined as follows:

µ̂h,i = 1/Th,i

Th,i∑
t=1

Yt, (1)

in which Th,i is the number of updates of arm xh,i. The algorithm also saves the upper-bounds Uh,i
which is defined as follows:{

Uh,i = µ̂h,i + ((2
√
2 + ρh)τ + ν1)ρ

h (h, i) is a leaf
Uh,i = max(Uh+1,2i−1, Uh+1,2i) otherwise.

(2)

The HCT algo. proceeds in phases (see Algo. 1). At each phase the algorithm works as fol-
lows: the algorithm finds the leaf with the highest upper confidence Uh,i and expands it. It then
selects an arm randomly in the corresponding area of each of new nodes and pulls that arm for
(1/ρ)2h log(9(2/ρ2)2Hmax) times,5 that is, the total number of pulls required to achieve a con-
fidence interval of order O(ρh) with high probability. In the case that Hmax increases form
the previous phase the algorithm also pulls the corresponding arms of all other leaves until their
Th,i ≥ (1/ρ)2h log(9(2/ρ2)2Hmax). This is to guarantee that Uh,i is uniform bound on f(x) with a
same high probability for every (h, i).

3.1 Main Result

In this section, we state our main theoretical result which is in the form of bound on the expected
regret of HCT. The result matches the previous result of Kleinberg et al. (2008) and Bubeck et al.
(2011a). Though here we do not require the i.i.d. assumption.
Theorem 1. Define 4(3τ + ν1)/ν2 near-optimality dimension d of function f with respect to the
dissimilarity l(., .) as in (Bubeck et al., 2011a). Then under Assumption 1 and Assumption 2 the
following bound holds on the expected regret:6

E(Rn) = O((log(n))1/(d+2)n(d+1)/(d+2) + log(n)).

4See (Bubeck et al., 2011a) for the formal definition of dissimilarity function.
5Hmax is the maximum depth of T .
6We will include the proof in a longer version.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 A phase of HCT algorithm.
Require: Decision tree T , Uh,i and Th,i for all nodes in the tree, maximum depth Hmax and a real

number ρ ∈ (0, 1)
Find the optimistic leaf (h+, i+) = argmax(h,i)= leaf(T) Uh,i and add its children to the tree
if h+ = Hmax then Hmax ← Hmax + 1
end if
for all (h, i) = leaf(T) do

repeat pulling (h, i) and updating Th,i
until Th,i ≥ (1/ρ)2h log(9(2/ρ2)2Hmax)
Update Uh,i From Eq. 1 and Eq. 2

end for

4 Discussion

In this section we discuss some of the outstanding issues regarding HCT algorithm.

Run time of HCT As we mentioned earlier, the run time of HCT is at maximum O(n log(n)).
This is due to the fact that the maximum depth of the covering tree in HCT can not become
larger thanO(log(n)): the number of pulls exponentially grows with the depth of T , which
implies that the depth of tree is at maximum O(log(n)). The run time of algorithm is,
therefore, no more thanO(n log(n)) since , except forO(log(n)) steps, HCT only traverses
one leaf per each step, which requires no more that O(h) ≤ O(log(n)) computation. This
implies that HCT achieves the same run time as that of truncated HOO(Bubeck et al.,
2011a). Though unlike truncated HOO, we need not to suffer the extra regret incurred due
to truncation and doubling trick.

Space complexity HCT is also very efficient in terms of its memory usage. As we argued earlier the
depth of tree in HCT is bounded by O(log(n)). So HCT needs at most O(|Imax|(log(n))
memory space to represent the tree, where Imax is the maximum number of nodes per
depth. Since we only expand those optimistic nodes which have reached the confidence
intervals of O(ρh), from the definition of near-optimality dimension d (see Bubeck et al.,
2011a), the total number of nodes per depth is at maximum Imax = O(ρ−dHmax) with
a high probability. In the case of benign optimization problems, where d = 0, Imax is a
constant which leads to the space complexity of O(log(n)).7 To the best of our knowledge
HCT is the only optimistic optimization algorithm which can represent the mean-payoff
function using only O(log(n)) memory space (e.g., for the same setting the space com-
plexity of HOO can be as large as n).

Unknown smoothness and mixing time In the current version of HCT we assume that the deci-
sion maker has access to the information regarding the smoothness of function f(x) as
well as the mixing time τ . In many problems those information are not available to the
decision maker. The case of unknown smoothness has been relatively well studied. In the
absence of the knowledge of dissimilarity function, one may estimate the smoothness in
an online manner and then use the estimated metric as it is the true metric (Bubeck et al.,
2011b). Another solution is to rely on simultaneous approaches for optimistic optimization
(Munos, 2011; Valko et al., 2013). Those methods require not the knowledge of smoothness
(dissimilarity function) nor they need to estimate from the data, though they only provide
guarantees in terms of simple regret as opposed to the more common notion of accumulated
regret, which we consider in this extended abstract. On the issue of unknown mixing time
τ one may rely on more powerful tails inequalities such as empirical Bernstein which can
replace the dependency on the mixing time with some notion of empirical variance of the
rewards. However, to the best of our knowledge there is no previous work on the extension
of empirical tail’s inequalities to the case of weakly dependent random variables, which we
consider in this paper.

7More generally depending on the value of d a sub-linear space complexity can be achieved.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

References
Auer, P., Ortner, R., and Szepesvári, C. (2007). Improved rates for the stochastic continuum-armed

bandit problem. In COLT, pages 454–468.
Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. (2011a). X-armed bandits. Journal of Machine

Learning Research, 12:1655–1695.
Bubeck, S., Stoltz, G., and Yu, J. Y. (2011b). Lipschitz bandits without the lipschitz constant. In

ALT, pages 144–158.
Kleinberg, R., Slivkins, A., and Upfal, E. (2008). Multi-armed bandits in metric spaces. In STOC,

pages 681–690.
Munos, R. (2011). Optimistic optimization of a deterministic function without the knowledge of its

smoothness. In NIPS, pages 783–791.
Valko, M., Carpentier, A., and Munos, R. (2013). Stochastic simultaneous optimistic optimization.

In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages
19–27.

5

	Introduction
	Background
	Statistical Assumption
	Geometrical Assumptions

	Algorithm
	Main Result

	Discussion

