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Abstract

We consider the nonnegative matrix factorization (NMF) approach to clustering
where the matrix to be factorized is a transition matrix for a Markov chain. We
prove the equivalence of this problem to an eigenvalue optimization problem and
based on this equivalence, interpret clustering NMF as finding a k-partition of the
data for which the stationary states of random walkers associated to each com-
ponent are optimally closed. One novel feature of this interpretation is that it si-
multaneously outputs clusters as well as a “local ranking” of the data within each
cluster, in the sense of PageRank. The local ranking provides label confidences
and naturally identifies cluster representatives. A relaxed formulation is identified
and a novel algorithm is proposed, which we show is strictly decreasing and con-
verges in a finite number of iterations to a local minimum of the relaxed objective
function. A semi-supervised version of the algorithm yields excellent results for
the MNIST handwritten digit dataset. We conclude with an intriguing relationship
to a reaction-diffusion system for antagonistically-interacting random walkers.

1 Introduction

Nonnegative matrix factorization (NMF) is the general problem of factorizing a matrix into nonneg-
ative matrices which are constrained in various ways. Although NMF has a variety of applications,
e.g., variable selection [1, 2, 3] and low rank matrix approximation [4], in this paper we consider its
application to clustering problems [5, 6, 7, 8]. Clustering NMF methods are closely related to spec-
tral clustering techniques [5, 7] and exhibit state-of-the-art performance in terms of cluster purity on
a wide collection of datasets [8].

Markov chains are a common tool used in machine learning; given a (not necessarily symmetric)
transition matrix, P , constructed from data, properties of the associated random walk can be used to
describe the data. Perhaps the most prominent example of this is PageRank [9], which utilizes the
stationary distribution of the walk for statistical ranking. Another example is diffusion maps [10],
which integrate the random walk at all time scales for the purpose of manifold learning.

In this paper, we consider the NMF approach to clustering, where the matrix to be factorized is a
transition matrix of a Markov chain, P . Throughout, we assume P ∈ Rn×n has nonnegative entries
and that P + P t is irreducible. The NMF approach to cluster the dataset represented by P solves

U? = arg min
U∈A

‖P − UUT ‖2F , where A := {U ∈ Rn×k : Uij ≥ 0, UTU = Idk}. (1)

The constraint U ∈ A implies the columns of U have disjoint support; the supports indicate the
cluster labels. The objective in (1) is non-convex and consequently, most algorithms rely on heuris-
tics, or complicated descent methods. Without loss of generality, we additionally assume the matrix
P to be symmetric.
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In §2, we introduce the concept of Perron-Dirichlet eigenvalues which are defined on sub-matrices
of P . We prove that (1) is equivalent to an eigenvalue optimization problem involving the Perron-
Dirichlet eigenvalues. Based on this equivalence, we interpret NMF clustering as finding a k-
partition of the data where random walkers associated to each partition component are optimally
closed. One novel feature of this interpretation is that it simultaneously outputs clusters as well as a
“local ranking” of the data within each cluster, in the sense of PageRank. This local ranking provides
label confidences and naturally identifies cluster representatives, which can be used for automatic
summaries, data compression, and visualization [11, 12].

In §3, we propose a novel algorithm for solving this equivalent eigenvalue optimization problem,
based on an extension of recent work [13]. Moreover, our algorithm can naturally incorporate known
information in the form of a semi-supervised extension. To our knowledge, this is the first NMF al-
gorithm which can incorporate such information. We demonstrate the effectiveness of the proposed
algorithm via a numerical experiment on the MNIST handwritten digit dataset. We conclude in §4
with an intriguing relationship between the eigenvalue optimization problem and a reaction-diffusion
system for antagonistically-interacting random walkers on a graph.

The present work is most similar to [13], where the authors consider a graph partitioning objective
based on Laplace-Dirichlet eigenvalues of the graph and prove an equivalence to NMF. The present
work extends this connection to NMF and provides a probabilistic interpretation in terms of random
walkers. We believe the geometric insight provided here could lead to an improved understanding
of other algorithms.

2 Clustering NMF and an eigenvalue optimization problem

In this section, we show that Nonnegative Matrix Factorization (1) is equivalent to an eigenvalue
optimization problem involving submatrices of P . The benefit of this equivalence is two-fold: we
gain a novel interpretation of NMF in terms of random walkers, and in §3 we derive an easily
implementable algorithm for approximately solving NMF.

Let P ∈ Rn×n be a nonnegative, symmetric, irreducible matrix and Ω ⊂ [n]. The Perron-Dirichlet
eigenvalue, λΩ, is the largest eigenvalue of the submatrix, PΩ = [Pij ]i,j∈Ω. These eigenvalues are
also characterized by the variational formulation,

λΩ = max
ψ 6=0

ψ|Ωc=0

〈Pψ,ψ〉
〈ψ,ψ〉

. (2)

The maximum is achieved by the associated eigenvector, which by the Perron-Frobenius theorem
can be taken to have positive entries [14].

From the identity ‖P −UUT ‖2F = ‖P‖F − 2tr(U tPU) + k, it can be seen that (1) is equivalent to
finding a partition of [n], written [n] = qki=1Ωi, which solves

max
[n]=qk

i=1Ωi

supp(ψi)⊂Ωi

k∑
i=1

〈ψi, Pψi〉
〈ψi, ψi〉

. (3)

In terms of the Perron-Dirichlet eigenvalues, λΩ, in (2), Equation (3) can thus be rewritten

max
[n]=qk

i=1Ωi

k∑
i=1

λΩi
. (4)

Theorem 2.1. Let P be a nonnegative, symmetric, irreducible matrix and Ψ∗ = [ψ1| · · · |ψk] be the
matrix whose columns are the eigenvectors corresponding to the optimal partition in (4). Then Ψ∗

attains the minimum in (1).

Intuition for (4) can be gained by considering a system with k species of random walkers. Each
species begins in a component of the disjoint partition [n] = qki=1Ωi, and walks independently
according to the transition matrix, P . The following lemma shows that λΩ can be interpreted as a
measure of closedness for the subsystem associated to the species beginning in Ω.
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Lemma 2.2. Let P be a symmetric transition matrix and Ω ⊂ [n]. Suppose the submatrix PΩ is
irreducible. Let ΦΩ := 1

|Ω|
∑
i,j∈Ω Pij be the conditional probability of staying in Ω given that the

random walk starts in Ω. Let ΞΩ := maxk∈Ω

∑
j∈Ω Pkj be the maximal conditional probability of

a walker ending in Ω given that it started at a particular state in Ω. Then ΦΩ ≤ λΩ ≤ ΞΩ.

Lemma 2.2 can be proven using standard techniques from Perron-Frobenius theory. Lemma 2.2
shows that (4) can be interpreted as finding the disjoint partition of [n] which are optimally closed for
the k species of walkers. The equivalence in Thm 2.1 implies that the block structure given in UU t
also indicates these subsystems. In §4, we return to this probabilistic intuition and consider a system
of k species which walk independently according to the transition matrix, P , but an antagonistic
interaction term forces disjoint support.

The eigenfunction ψΩ corresponding to λΩ is an approximation to the stationary distribution on the
subgraph induced by Ω. Thus, we interpret ψΩ to be a ranking of the states in Ω, as in PageRank [9].
A large ranking indicates that the state is central to that subgraph. In this case, (1) (or equivalently
(4)) simultaneously clusters the items in a dataset and ranks their representation within the cluster.
The state for which ψΩ is maximal is the most representative state for the label Ω.

3 Relaxation, a rearrangement algorithm, and numerical experiments

In this section, we describe an algorithm for approximately solving (4), based on methods in [13].
We begin by defining an appropriate relaxation. For α > 0, and φ : [n] → [0, 1], let λα(φ) be the
largest eigenvalue of the perturbed matrix P −α(1−φ). Observe that this eigenvalue can be written

λα(φ) = max
ψ 6=0

〈Pψ,ψ〉 − α〈1− φ, ψ〉
〈ψ,ψ〉

. (5)

For Ω ⊂ [n], limα→∞ λα(χΩ) = λΩ and limα→∞ ψα(χΩ) = ψ(Ω). Intuitively, a large value of α
enforces localization of ψ on supp(φ).

Define the relaxed eigenvalue optimization problem,

Λα,∗k := max
{φi}ki=1∈Ak

k∑
i=1

λα(φi) where Ak := {{φi}ki=1 : φi : [n]→ [0, 1] and
k∑
i=1

φi = 1}. (6)

Theorem 3.1. Let k ∈ Z+ and α > 0 be fixed. Every (local) maximizer of Λαk over Ak is a
collection of indicator functions.

Equation (6) was motivated by a relaxation for a geometric partitioning problem [15, 16, 17]. Fol-
lowing [13], we propose a rearrangement algorithm for the solution of (6) (Algorithm 1), which
enjoys the following convergence and local optimality guarantee.

Theorem 3.2. Let α > 0. For any initialization, the rearrangement algorithm 1 terminates in a
finite number of steps at a local maximum of Λαk , as defined in (6).

Algorithm 1 is an attractive alternative for solving the NMF objective (1) due to its simplicity and
convergence guarantee; the only requirement on P is that P + P t be nonnegative and irreducible.
Algorithm 1 is based on geometrically rearranging the partitions based on the sub-levelsets of the
relaxed eigenfunctions. Moreover, Algorithm 1 admits a natural semi-supervised extension. If a
subset of the labels are known, one can fix the label membership throughout the algorithm and the
convergence guarantees still remain valid. We can interpret this as a set of stationary walkers of
fixed species which act as a barrier to other species. Same-species walkers will congregate around
these fixed-label points.

3.1 Numerical experiment: MNIST handwritten digit dataset

We consider an MNIST dataset consisting of 70,000 28× 28 greyscale images of handwritten digits
0 to 9. We randomly sampled 3% of the data and used the semi-supervised variant of our algorithm
described above. The remaining initialized labels were assigned randomly.
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Algorithm 1 A rearrangement algorithm for (6).

Input: An initial {φi}ki=1 ∈ Ak.

while not converged, do
For i = 1, . . . , k, compute the (positive and normalized) eigenfunction ψi corresponding to
λα(φi) in (2).
Assign each state v ∈ [n] the label i = arg maxj ψj(v).
Let {φi}ki=1 be the indicator functions for the labels.

end while

For ten different random initializations, we run the algorithm until convergence and choose the
lowest energy partition. In each case, the algorithm converges in approximately 20 iterations. The
purity obtained, as defined in [8], is 0.961 which is comparable to the performance of state-of-the-
art clustering algorithms. We note that the partitions identified for other initial configurations had
similar energy and purity values. More details, including figures, can be found in [13].

4 Discussion and a connection to a reaction-diffusion system

In §2 we showed the equivalence of a clustering NMF of the transition matrix, P , as in (1), to an
eigenvalue optimization problem involving Perron-Dirichlet eigenvalues of P , as in (4). Lemma
2.2 provides an interpretation of (4) in terms of finding subsystems for which random walkers are
optimally closed. In §3, we proceeded to find a relaxation of (4), and a rearrangement algorithm for
finding approximate solutions.

Here, we return to the interpretation of (4) in terms of random walkers and introduce an “antag-
onistic” interaction which discourages distinct species from occupying the same state. Following
[18, 19], we consider an interacting system of k species of random walkers, each of which walks
independently according to P , and interacts according to the following rule: if two walkers of dif-
ferent species meet, they annihilate one another. When a walker of a given species is annihilated,
another walker of the same species is chosen at random and duplicated, conserving the total number
of each species.

This interacting system is modeled by the nonlinear, nonlocal, reaction-diffusion equations,

d

dt
pi = −(∆ + κVi)pi +

κ

n
〈pi, Vi〉1, i = 1, . . . , k, (7)

where ∆ = Id − P is the Laplacian, Vi =
∑
j 6=i p

2
j is a nonlinear potential, and κ > 0 is an inter-

action parameter. (7) is the `2 gradient flow of the energy E[p] = 1
2

∑
i〈pi,∆pi〉+

κ
4

∑
i 6=j〈p2

i , p
2
j 〉

subject to the constraints that 〈pi, 1〉 = 1 for all i ∈ [k]. Due to the invariance of the posititive
orthant, if the system is initiated with each pi on the probability simplex, it will remain there for
all time. Thus, pi(t) ∈ Rn is interpreted as the probability of finding a walker of species i on a
given state at time t. The linear “diffusion” term in (7) can be interpreted as the random walk. The
nonlinear potential penalizes the overlap between pi and pj for i 6= j. The nonlinear terms in (7)
represent the interaction between different species. Since the mass of each pi is conserved, this term
forces each species to dominate a subset of the states.

We conjecture that as κ → ∞, the stationary states of (7) are equivalent to the Perron-Dirichlet
eigenfunctions, attaining (2). If true, this exposes a new avenue for NMF algorithm development.
In particular, if stationary states of (7) can be efficiently found, then to each state we assign the
class label corresponding to the species dominating there. Many open questions remain concerning
the system (7) and, in particular, its relationship to (2) and (5), but we hope that the geometric
interpretation provided here could already lead to an improved understanding of other algorithms.
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