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Abstract

First order stochastic convex optimization is an extremely well-studied area with
a rich history of over a century of optimization research. Active learning is a
relatively newer discipline that grew independently of the former, gaining popu-
larity in the learning community over the last few decades due to its promising
improvements over passive learning. Over the last year, we have uncovered con-
crete theoretical and algorithmic connections between these two fields, due to
their inherently sequential nature and decision-making based on feedback of ear-
lier choices, that have yielded new methods and proofs techniques in both fields.
Here, we summarize the foundations of these connections and summarize our re-
cent advances, with special focus on the implications for stochastic optimization.
Specifically, we get an interesting lower bound technique that is quite transparent
and are simultaneously tight for derivative-free optimization and first-order opti-
mization for both point and function error. We show that a randomized coordinate
descent algorithm with an active learning line search can achieve minimax optimal
rates while being adaptive to unknown uniform convexity parameters. This pro-
cedure only relies on unidirectional noisy gradient signs as opposed to real valued
gradient vectors - as a result, rounding errors and other errors that preserve the
sign of the gradient lead to deterministic (non-stochastic) rates of convergence.

1 Introduction

This paper summarizes two works from this year [8, 9] that explore the intersection of seemingly
distinct fields - convex optimization and active learning. Recently, [7] pointed out their similarity due
to their inherent sequential nature and the complex role of feedback in determining future actions.
In [8, 9], we make large advances in relating these fields, both intuitively and formally.

At a high level, we show that the role of the regression function in active learning of one-dimensional
threshold functions has strong parallels with the sign of a directional gradient in d-dimensional
optimization, the function error in optimization plays the role of excess risk in active learning,
uniform convexity (of which strong convexity is a special case) is an exact analog of Tsybakov’s
noise/margin condition in active learning, and so on.

As we shall summarize later in this paper, this leads to explicit mathematical relationships between
the two fields - the minimax point error scales the same way in both settings, the function error and
excess risk have the same decay rate, lower bound techniques for optimization can be borrowed from
active learning, upper bound ideas from optimization yield new methods in active learning, active
learning can be used for line-search in descent procedures - the list is long and interesting.

We will first concretely introduce the settings for optimization and learning, and then mathematically
summarize all our contributions that include new lower and upper bounds for optimization.
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1.1 Setup of First-Order Stochastic Optimization of Uniformly Convex Functions

First-order (or zeroth-order) stochastic convex optimization [6] is the task of approximately mini-
mizing a convex function over a convex set, given oracle access to unbiased estimates of the function
and gradient (or just function for zeroth-order) at any point, using as few queries as possible.

Assume we are given an arbitrary convex set S ⊂ Rd of known diameterR = maxx,y∈S ‖x−y‖2.
A convex function f with x∗ = arg minx∈S f(x) is said to be k-uniformly convex if, for some
λ > 0, k ≥ 2 (strong convexity arises when k = 2), we have for all x, y ∈ S

f(y) ≥ f(x) +∇f(x)>(y − x) +
λ

2
‖x− y‖k2 .

f is L-Lipschitz for some L > 0 if ‖∇f(x)‖2 ≤ L; equivalently |f(x)− f(y)| ≤ L‖x− y‖2 for all
x, y ∈ S. A differentiable f is H-strongly smooth (or has a H-Lipschitz gradient) for some H > λ
if for all x, y ∈ S, we have ‖∇f(x)−∇f(y)‖2 ≤ H‖x− y‖, or equivalently

f(y) ≤ f(x) +∇f(x)>(y − x) +
H

2
‖x− y‖22

A stochastic first order oracle O is a function that accepts x ∈ S, and returns(
f̂(x), ĝ(x)

)
∈ Rd+1 where E

[
f̂(x)

]
= f(x),E

[
ĝ(x)

]
= ∇f(x)

(they also have bounded variance) and the expectation is over any internal randomness of the oracle.
An optimization algorithm is a method M that sequentially queries O at points in S and returns
x̂T as an estimate of the optimum of f after T queries. Denoting x∗f,S := arg minx∈S f(x) and
ρT (M,f, S,O) := ‖x̂T − x∗f,S‖2, εT (M,f, S,O) := f(x̂T )− f(x∗f,S), we define as in [1]:

ε∗T (F) := sup
O

sup
S

inf
M

sup
f∈F

EO[εT (M,f, S,O)] and ρ∗T (F) := sup
O

sup
S

inf
M

sup
f∈F

EO[ρT (M,f, S,O)]

1.2 Setup of Active Threshold Learning under the Tsybakov Noise Condition (TNC)

The problem of one-dimensional threshold estimation assumes you have an interval of length R,
say [0, R]. Given a point x, it has a label y ∈ {+,−} that is drawn from an unknown conditional
distribution (or regression function) η(x) := Pr

(
Y = +|X = x

)
and the threshold t is the unique

point where η(x) = 1/2, with it being larger than half on one side of t and smaller than half on the
other (hence it is more likely to draw a + on one side of t and a − on the other side).

The task of active learning of threshold classifiers allows the learner to sequentially query T (possi-
bly dependent) points, observing labels drawn from the unknown conditional distribution after each
query, with the goal of returning a guess x̂T as close to t as possible. In the formal study of classi-
fication (cf. [11]), it is common to study minimax rates when the regression function η(x) satisfies
Tsybakov’s noise or margin condition (TNC) with exponent k at the threshold t.

M |x− t|k−1 ≥ |η(x)− 1/2| ≥ µ|x− t|k−1 whenever1 |η(x)− 1/2| ≤ ε0 (1)

for some constants M > µ > 0, ε0 > 0, k ≥ 1 (this is the version of TNC from [2]).

A standard measure for how well a classifier h performs is given by its risk, which is simply the
probability of classification error (expectation under 0 − 1 loss), R(h) = Pr

[
h(x) 6= y

]
. The

performance of threshold learning strategies can be measured by the excess classification risk of the
resultant threshold classifier at x̂T compared to the Bayes optimal classifier at t as given by 2

R(x̂T )−R(t) =

x̂T∨t∫
x̂T∧t

|2η(x)− 1|dx (2)

Akin to [2], we used a uniform marginal distribution for risk of active learning since there is no
underlying distribution over x. Alternatively, one can measure the one-dimensional point error
|x̂T−t| in estimation of the threshold ([2] define minimax rates like the previous subsection).

1Note that |x− t| ≤ δ0 :=
(
ε0
M

) 1
k−1 =⇒ |η(x)− 1/2| ≤ ε0 =⇒ |x− t| ≤

(
ε0
µ

) 1
k−1

2a ∨ b := max(a, b) and a ∧ b := min(a, b)
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2 Connecting The TNC and Uniform Convexity Exponents

2.1 Stochastic Gradient-Sign Oracles

Define a stochastic sign oracle to be a function of x ∈ S, j ∈ {1...d}, that returns ŝj(x) ∈ {+,−}
as a noisy sign

(
[∇f(x)]j

)
, where [∇f(x)]j is the j-th coordinate of∇f and 3∣∣ηj(x)− 0.5

∣∣ = Θ
(
|[∇f(x)]j |

)
and ηj(x) = Pr

(
ŝj(x) = sign

(
[∇f(x)]j

)∣∣x)
(the probability is over any internal randomness of the oracle).

A sign oracle is weaker than a first order oracle, and can actually be obtained by returning the sign
of the first order oracle’s noisy gradient if the mass of the noise distribution grows linearly around
its zero mean (as satisfied by gaussian, uniform, and many other kinds of noise). At the optimum
along coordinate j, the oracle returns a ±1 with equal probability, and otherwise returns the correct
sign with a probability proportional to the value of the directional derivative at that point (this is
reflective of the fact that the larger the derivative’s absolute value, the easier it would be for the
oracle to approximate its sign, hence the smaller the probability of error). It is not unreasonable
that there may be other circumstances where even calculating the (real value) gradient in the i-th
direction could be expensive, but estimating its sign could be a much easier task as it only requires
estimating whether function values are expected to increase or decrease along a coordinate.

2.2 Making Connections Transparent in 1-D

Taking one point as x∗ in the definition of UC, we see that |f(x) − f(x∗)| ≥ λ
2 ‖x − x

∗‖k Since
‖∇f(x)‖‖x− x∗‖ ≥ ∇f(x)>(x− x∗) ≥ f(x)− f(x∗) (by convexity),

‖∇f(x)− 0‖ ≥ λ

2
‖x− x∗‖k−1 (3)

Let us work in 1-D for clarity of exposition, i.e. |∇f(x)− 0| ≥ λ
2 |x−x

∗|k−1. Notice the similarity
to the form of the TNC |η(x)− 1/2| ≥ µ|x− t|k−1.

Since f is convex, its noiseless gradient is an increasing function of x that is negative before x∗ and
positive after x∗. Hence, sign(∇f(x)) is the true label of x, sign(∇f(x) + z) is the observed label,
and x∗ corresponds to the decision boundary where labels switch signs. Defining

ηf (x) := Pr
(

sign(∇f(x) + z) = +|x
)

then minimizing f corresponds to identifying the Bayes classifier [x∗, 1] because the point at which
ηf (x) = 0.5 is where ∇f(x) = 0, which is x∗.

Consider a point x with∇f(x) > 0 and hence has true label +. The probability of seeing a + is the
probability that we draw z ∈

(
−∇f(x),∞

)
so the sign of∇f(x)+z is still positive. Hence,

ηf (x) = Pr
(
∇f(x) + z > 0

)
= Pr(z > 0) + Pr

(
−∇f(x) < z < 0

)
= 0.5 + Θ

(
∇f(x)

)
=⇒

∣∣ηf (x)− 1
2

∣∣ = Θ
(
∇f(x)

)
= Θ

(
|x− x∗|k−1

)
Hence, ηf (x) satisfies the TNC with exponent k, and an active learning algorithm can be used to
obtain a point x̂T with small point-error and excess risk. Note that function error in convex optimiza-
tion is bounded above by excess risk of the corresponding active learner using eq (2) because

fj(x̂T )− fj(x∗j ) =

∣∣∣∣∣
x̂T∨x∗

j∫
x̂T∧x∗

j

[∇f(x)]jdx

∣∣∣∣∣ = Θ

( x̂T∨x∗
j∫

x̂T∧x∗
j

|2ηf (x)− 1|dx

)

= Θ
(
R(x̂T )

)
3f = Θ(g) means f = Ω(g) and f = O(g) (rate of growth)
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3 Summary of Contributions

3.1 Lower Bounds

Let FSC be the set of all Lipschitz strongly convex functions, and FC the set of all Lipschitz
convex functions. Let FUCk be the set of all Lipschitz uniformly convex functions with exponent
k ≥ 2. Let Fk be the set of all functions that satisfy f(x) − f(x∗) ≥ c‖x − x∗‖k2 for some
c > 0, k ≥ 1. This forms a nested hierarchy of classes of FC , with Fk1 ⊂ Fk2 whenever k1 < k2.
Also notice that F2 ⊇ FSC = FUC2 and

⋃
k Fk ⊆ FC . For any finite 1 ≤ k < ∞, the function is

strictly convex and hence the minimizer is well-defined and unique.

Theorem 1. For first order oracles, we have ε∗T (Fk) = Θ(T−
k

2k−2 ) and ρ∗T (Fk) = Θ(T−
1

2k−2 ).

Since we use uniformly convex functions in our proofs, the bounds immediately hold for uniformly
convex functions too. Also, since

⋃
k Fk ⊆ FC , these bounds are valid for FC too (specifically

taking κ → ∞). These lower bounds (which are tight) have exactly the same rate as the lower
bounds for point-error and risk in active learning [2], emphasizing our claimed connections.

Theorem 2. For zeroth order oracles, we have ε∗T (Fk) = Ω(1/
√
T ) and ρ∗T (Fk) = Ω(T−

1
2k ).

Some of these bounds were known - strongly convex functions in [1] (first order), uniformly convex
functions in [10] (first order, completely different proof technique) and strongly convex functions in
[5] (zeroth order), while they were not published for zeroth order uniformly convex functions. In a
single simple unified proof, we simultaneously get all these lower bounds, using techniques from the
active learning literature (specifically, the proofs in [2]). We also simultaneously get lower bounds
for function and point error, while most of the literature has focused only on function error.

3.2 Upper Bounds

The first algorithm is a generalization of Epoch Gradient Descent [3] that minimized strongly
convex functions at the optimum rate. However, this needs knowledge of Lipschitz constant L,
uniform convexity constant λ and exponent k. This procedure works for Fk for k ≥ 1, which
actually captures more functions than FUCk which only holds for k ≥ 2. In fact as k → 1, we get
exponentially fast rates just as in the case of active threshold learning [2].

Theorem 3. Algorithm EpochGD(S, κ, T, δ, L, λ) [8] returns x̂T ∈ S after T queries to any
stochastic first order oracle O, such that for any f ∈ Fκ, κ > 1 on any S ∈ S, f(x̂T ) − f(x∗f ) =

Õ(T−
κ

2κ−2 ) and ‖x̂T − x∗f‖ = Õ(T−
1

2κ−2 ) hold with probability at least 1− δ for any δ > 0. 4

The second algorithm is more general because it works with the much weaker stochastic sign
oracle, and is adaptive to all unknown uniform convexity and smoothness parameters. This is very
powerful but it comes at the price of requiring a stronger smoothness Assumption LkSS [9] which
is analogous to a two-sided condition in Eq. (3), very much like the two-sided TNC condition in
Eq. (1). First, we use ideas from [4] and exploit connections between the two areas to develop an
optimal active threshold learning algorithm that is adaptive to all unknown TNC parameters.

Theorem 4. In the setting of one-dimensional active learning of thresholds, Algorithm 1 in [9]
adaptively achieves R(xE) − R(t) = Õ

(
T−

k
2k−2

)
with probability at least 1 − δ in T queries

when the unknown regression function η(x) has unknown TNC parameters µ, k.

We then repeatedly use this adaptive 1-D active learner to perform line-search in a randomized
coordinate descent method to get an optimization algorithm that is adaptive to unknown parameters.
As a special case, strongly convex and strongly smooth functions can be minimized in Õ(1/T ) steps.

Theorem 5. Given access to only a stochastic sign oracle, Randomized Stochastic-Sign Coordinate
Descent [9] can minimize UC and LkSS functions at the minimax optimal convergence rate for ex-
pected function error of Õ(T−

k
2k−2 ) adaptive to all unknown convexity and smoothness parameters.

4Õ hides log log T and log(1/δ) factors
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