
Recovering sparsely used overcomplete dictionaries
via alternating minimization

Alekh Agarwal
Microsoft Research

alekha@microsoft.com

Animashree Anandkumar
UC Irvine

a.anandkumar@uci.edu

Prateek Jain
Microsoft Research

prajain@microsoft.com

Praneeth Netrapalli
UT Austin

praneethn@utexas.edu

Rashish Tandon
UT Austin

rashish@cs.utexas.edu

Abstract

We consider the problem of learning sparsely used overcomplete dictionaries,
where each observation consists of a sparse combination of the mutually inco-
herent dictionary elements. We consider an iterative algorithm with the following
alternating steps: 1) estimation of the dictionary coefficients for each observa-
tion throughℓ1 minimization, given the dictionary estimate and 2) estimation of
the dictionary elements through least squares, given the coefficient estimates. We
establish that, under a set of sufficient conditions, our method converges at a lin-
ear rate in a local neightborhood of the true dictionary. Combined with recent
techniques for initialization within this local neighborhood, our result provides an
exact recovery guarantee for overcomplete and incoherent dictionaries.

1 Introduction
The problem of dictionary learning can be stated as follows:given observationsY ∈ R

d×n, the task
is to decompose it as

Y = A∗X∗, A∗ ∈ R
d×r, X∗ ∈ R

r×n. (1)

A∗ is referred to as thedictionarymatrix andX∗ is thecoefficientmatrix. r denotes the number of
basis elements in this dictionary, and we consider the overcomplete setting wherer ≥ d. Without
further constraints, the solution to (1) is not unique. A popular framework is to assume that the
coefficient matrixX∗ is sparse, and that each observationYi ∈ R

d is a sparse combination of the
dictionary elements (i.e. columns of the dictionary matrix). This problem is known assparse coding
and it has been argued that sparse coding can provide a succinct representation of the observed data,
given only unlabeled samples [9, 8].

Many practical dictionary learning methods focus on minimizing variants of the objective

min
A,X

‖Y −AX‖2F + λ‖X‖1. (2)

It is challenging to provide guarantees on such procedures owing to the non-convexity of the objec-
tive. Indeed, the best results to our knowledge are those concerning the local optimality properties
of A∗, X∗ in some recent works [5, 6]. There have been other works whichconsider alternative
formulations to solve the underlying dictionary learning problem. Notably, Spielman et al. [11] re-
cently provided a method for guaranteed recovery when the dictionary matrixA∗ ∈ R

d×r has full
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Algorithm 1 AltMinDict (Y,A(0), ǫ0): Alternating minimization for dictionary learning

Input: SamplesY , initial dictionary estimateA(0), accuracy sequenceǫt and sparsity levels.
Thresholding functionTρ(a) = a if |a| > ρ and0 o.w.

1: for iterationst = 0, 1, 2, . . . , T − 1 do
2: for samplesi = 1, 2, . . . , n do
3: X(t+ 1)i = argminx∈Rr‖x‖1

such that,‖Yi −A(t)x‖2 ≤ ǫt.
4: end for
5: Threshold:X(t+ 1) = T9sǫt(X(t+ 1)).
6: EstimateA(t+ 1) = Y X(t+ 1)

+

7: Normalize:A(t+ 1)i =
A(t+1)i

‖A(t+1)i‖2

8: end for
Output: A(T )

column rank. This implies that the number of dictionary elementsr ≤ d, whered is the observed
dimension. In the overcomplete setting, the very recent works of Agarwal et al. [1, 2] provide meth-
ods forapproximate recoveryof the true dictionary. In this paper, we consider the convergence of
alternating minimization procedures for optimizing the objective (2).

Summary of Results: Our main result concerns the convergence to the global optimum of al-
ternating minimization. Our result requires initializatio with a dictionary with an error of at most
O
(

1/s2
)

relative to the true dictionary. Further whens = O
(

d1/6
)

and number of samples satisfies
n = O

(

r2/s2
)

, we establish the linear convergence of the alternating minimization procedure to
the true dictionary. Combining our result with that of Agarwal et al. [1], where we initialize the
alternating method using their solution as an initialization, we guarantee exact recovery of the true
dictionary given thats = O

(

d1/9, r1/8
)

, and sufficient number of samplesn = O
(

r2/s2
)

..

2 Algorithm
Notation: Let [n] := {1, 2, . . . , n}. For a vectorv or a matrixW , we will use the shorthand
Supp(v) andSupp(W ) to denote the set of non-zero entries ofv andW respectively. Let‖w‖
denote theℓ2 norm of vectorw, and similarly for a matrixW , ‖W‖ denotes its spectral norm. For a
matrixX, Xi, Xi andXi

j denote theith row, ith column and(i, j)th element ofX respectively.

As descibed earlier, we alternate between two procedures, viz., a sparse recovery step for estimating
the coefficients given a dictionary, and a least squares stepfor a dictionary given the estimates of the
coefficients. The details of this approach are presented in Algorithm 1.

The sparse recovery step of Algorithm 1 is based onℓ1-regularization, followed by thresholding.
The thresholding is required for us to guarantee that the support set of our coefficient estimateX(t)
is asubsetof the true support with high probability. Once we have an estimate of the coefficients,
the dictionary is re-estimated through least squares. The overall algorithmic scheme is popular for
dictionary learning, and there are a number of variants of the basic method. For instance, theℓ1-
regularized problem in step 3 can also be replaced by other robust sparse recovery procedures such
as OMP [13] or GraDeS [4]. More generally the exact lasso and least-squares steps may be replaced
with other optimization methods for computational efficiency, e.g. [7].

3 Guarantees
In this section, we provide our main convergence result and also clearly specify all the required
assumptions onA∗ andX∗.

3.1 Assumptions and exact recovery result
We start by formally describing the assumptions needed for the main recovery result of this paper.

(A1) Incoherent Dictionary Elements: Wlog, assume that all the elements are normalized:
‖A∗

i ‖ = 1, for i ∈ [r]. We assume pairwise incoherence condition on the dictionary
elements, for some constantµ0 > 0, |〈A∗

i , A
∗
j 〉| <

µ0√
d
.
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(A2) Spectral Condition on Dictionary Elements:The dictionary matrix has bounded spectral
norm, for some constantµ1 > 0, ‖A∗‖ < µ1

√

r
d .

(A3) Non-zero Entries in Coefficient Matrix: We assume that the non-zero entries ofX∗ are
drawn i.i.d. from a zero-mean unit-variance distribution,and satisfy the following a.s.:
|X∗i

j | ≤ M, ∀i, j.

(A4) Sparse Coefficient Matrix: The columns of coefficient matrix haves non-zero entries
which are selected uniformly at random from the set of alls-sized subsets of[r]. We

requires to satisfys < d1/6

c2µ
1/3
1

, for universal constantc2 > 0.

(A5) Sample Complexity: For a given failure parameterδ > 0, the number of samplesn needs
to satisfyn ≥ c3

r2

s2 log
1
δ , wherec3 > 0 is a universal constant.

A(6) Initial dictionary with guaranteed error bound: We assume that we have access to an
initial dictionary estimateA(0) such thatǫ0 := mini∈[r] minz∈{−1,+1} ‖zA

∗
i −A(0)i‖2 <

1
2592s2 .

(A7) Choice of Parameters for Alternating Minimization: Algorithm 1 uses a sequence of

accuracy parametersǫ0 = 1/2592s2 andǫt+1 = 25050µ1s
3

√
d

ǫt.

Assumption(A1) on normalization of dictionary elements is without loss of generality since we
can always rescale the dictionary elements and the corresponding coefficients and obtain the same
observations. However, the incoherence assumption is crucial in establishing our guarantees. In
particular, incoherence also leads to a bound on the restricted isometry property (RIP) constant [10].
The assumption(A2) provides a bound on the spectral norm ofA∗. Note that the incoherence
and spectral assumptions are satisfied with high probability (w.h.p.) when the dictionary elements
are randomly drawn from a mean-zero sub-gaussian distribution. Assumption(A3) imposes some
natural constraints on the non-zero entries ofX∗. Assumption(A4) on sparsity in the coefficient
matrix is crucial for identifiability of the dictionary learning problem. Assumption(A5) provides
a bound on sample complexity. Assumption(A6) establishes the radius of the local neighborhood
within which we need to initialize Algorithm 1 for our convergence results to hold. Assumption
(A7) specifies the choice of accuracy parameters used by alternating method in Algorithm 1. Due

to Assumption(A3) on sparsity levels, we have that25050µ1s
3

√
d

< 1 and the accuracy parameters in
(A7) form a decreasing sequence. This implies that in Algorithm 1, the accuracy constraint becomes
more stringent with the iterations of the alternating method.

Given these assumptions, we now present our main result regarding the local linear convergence of
Algorithm 1.

Theorem 1 (Local linear convergence). Under assumptions(A1)-(A7),, with probability at least
1− 2δ the iterateA(t) of Algorithm 1 satisfies the following for allt ≥ 1:

min
z∈{−1,1}

‖zAi(t)−A∗
i ‖2 ≤ ǫt, 1 ≤ i ≤ r.

Remarks: The consequences of Theorem 1 are powerful combined with ourAssumption(A4)
and the recurrence in(A7) (since(A4) ensures thatǫt forms a decreasing sequence). In particular,
it is implied that with high probability we obtain,

min
z∈{−1,1}

‖zA(t)i −A∗
i‖2 ≤ ‖A(0)−A∗‖22

−t.

Given the above bound, we need at mostO
(

log2
ǫ0
ǫ

)

in order to ensure‖zA(T )i − A∗
i‖2 ≤ ǫ

for all the dictionary elementsi = 1, 2, . . . , r. In the convex optimization parlance, the result
demonstrates a local linear convergence of Algorithm 1 to the globally optimal solution under an
initialization condition. Another way of interpreting ourresult is that the global optimum has abasin
of attractionof sizeO

(

1/s2
)

for our alternating minimization procedure under these assumptions
(since we requireǫ0 ≤ O

(

1/s2
)

).

We also observe that under the somewhat stronger assumptionthats = O
(

d1/9, r1/8
)

, and further
assuming a lower bound on the non-zero entries ofX∗, it is possible to use the results of Agarwal et
al. [1] or Arora et al. [2] to guarantee that Assumption(A6) is met. This leads to theexact recovery
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Figure 1: (a): Average error after each step alternating minimization step of Algorithm 1 on log-
scale. (b): Average error after the initialization procedure of Agarwal et al. [1] and after5 alternating
minimization steps of Algorithm 1. (c): Sample complexity requirement of the alternating minimiza-
tion algorithm. For ease of experiments, we initialize the dictionary using a random perturbation of
the true dictionary.

of the true dictionary in the context of the underlying dictionary learning problem. We also recall
that the lasso step in Algorithm 1 can be replaced with a different robust sparse recovery procedure,
with qualitatively similar results.

4 Experiments
Alternating minimization/descent approaches have been widely used for dictionary learning and
several existing works show effectiveness of these methodson real-world/synthetic datasets [3, 12].
Hence, instead of replicating those results, in this section we focus on illustrating the following three
key properties of our algorithms via experiments in a controlled setting: a) Advantage of alternat-
ing minimization over one-shot initialization, b) linear convergence of alternating minimization, c)
sample complexity of alternating minimization.
Data generation model: Each entry of the dictionary matrixA is chosen i.i.d. fromN (0, 1).
Note that, random Gaussian matrices are known to satisfy incoherence and the spectral norm bound
[14]. The support of each column ofX was chosen independently and uniformly from the set
of all s-subsets of[r]. Similarly, each non-zero element ofX was chosen independently from
the uniform distribution on[−2,−1] ∪ [1, 2]. We use the GraDeS algorithm of [4] to solve the
sparse recovery step, as it is faster than lasso. We measure error in the recovery of dictionary by

error(A) = maxi

√

1−
〈Ai,A∗

i 〉2
‖Ai‖2

2
‖A∗

i ‖2

2

. The first two plots are for a typical run and the third plot

averages over10 runs. The implementation is in Matlab.
Linear convergence: In the first set of experiments, we fixedd = 100, r = 200 and measured
error after each step of our algorithm for increasing valuesof n. Figure 1 (a) plots error observed
after each iteration of alternating minimization; the firstdata point refers to the error incurred by the
initialization method. As expected due to Theorem 1, we observe a geometric decay in the error.
better for higher values ofn.
One-shot vs iterative algorithm: It is conceivable that the initialization procedure itself is sufficient
to obtain an estimate of the dictionary upto reasonable accuracy. alternatingminimization procedure
of Algorithm 1. Figure 1(b) shows that this is not the case. The figure plots the error in recovery
vs the number of samples used for both the approach of Agarwalet al. [1] and Algorithm 1. It is
clear that the recovery error of the alternating minimization procedure is significantly smaller than
that of the initialization procedure. For example, forn = 2.5sr log r with s = 3, r = 200, d = 100,
initialization incurs error of.56 while alternating minimization incurs error of10−6. Note however
that the recovery accuracy of the initialization procedureis non-trivial and also crucial to the success
of alternating minimization- a random vector inRd would give an error of1 − 1

d = 0.99, where as
the error after initialization procedure is≈ 0.55.
Sample complexity: Finally, we study sample complexity requirement of the alternating minimiza-
tion algorithm which isn = O

(

r2 log r
)

according to Theorem 1, assuming good enough initial-
ization. Figure 1(c) suggests that in fact onlyO (r) samples are sufficient for success of alternating
minimization. The figure plots the probability of success with respect tonr for various values ofr.
A trial is said to succeed if at the end of25 iterations, the error is smaller than10−6. Since we focus
only on the sample complexity of alternating minimization,we use a faster initialization procedure:
we initialize the dictionary by randomly perturbing the true dictionary asA(0) = A∗ + Z, where
each element ofZ is anN (0, 0.5) random variable. Figure 1 (c) shows that the success probability
transitions at nearly the same value for various values ofr, suggesting that the sample complexity
of the alternating minimization procedure in this regime ofr = O (d) is justO(r).
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