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Abstract

We consider the problem of learning sparsely used overcatmictionaries,
where each observation consists of a sparse combinatidmeafttually inco-
herent dictionary elements. We consider an iterative @lgarwith the following
alternating steps: 1) estimation of the dictionary coedfits for each observa-
tion through?¢; minimization, given the dictionary estimate and 2) estiorabf
the dictionary elements through least squares, given tefficient estimates. We
establish that, under a set of sufficient conditions, outheeétonverges at a lin-
ear rate in a local neightborhood of the true dictionary. Gred with recent
techniques for initialization within this local neighbadd, our result provides an
exact recovery guarantee for overcomplete and incoheretitiraries.

1 Introduction

The problem of dictionary learning can be stated as follayigen observation¥ € R?*", the task
is to decompose it as

Y = A*X*, A* e R X* e R™*™, (1)
A* is referred to as thdictionary matrix andX* is thecoefficientmatrix. » denotes the number of
basis elements in this dictionary, and we consider the oveptete setting where > d. Without
further constraints, the solution tol (1) is not unique. A plap framework is to assume that the
coefficient matrixX * is sparse, and that each observafigne R is a sparse combination of the
dictionary elements (i.e. columns of the dictionary matrikhis problem is known asparse coding
and it has been argued that sparse coding can provide a suagnesentation of the observed data,
given only unlabeled samples [9, 8].

Many practical dictionary learning methods focus on miimg variants of the objective

. 2
minY — AX[7 + AIX]). @

It is challenging to provide guarantees on such procedw@mao the non-convexity of the objec-
tive. Indeed, the best results to our knowledge are thoseetnimg the local optimality properties
of A*, X* in some recent works [5, 6]. There have been other works wtictsider alternative
formulations to solve the underlying dictionary learninglgem. Notably, Spielman et al. [11] re-
cently provided a method for guaranteed recovery when tttéodary matrixA* ¢ R4<" has full



Algorithm 1 AltMinDict (Y, A(0), €o): Alternating minimization for dictionary learning

Input: SamplesY’, initial dictionary estimate4(0), accuracy sequence and sparsity leves.
Thresholding functiory,(a) = a if |a| > p and0 o.w.

1: for iterationst = 0,1,2,...,7 —1do

2: for samples =1,2,...,ndo

3 X(t+1), = argminger-||z|

such that]|Y; — A(t)z|, < .

4: end for
5. Threshold:X (t 4+ 1) = Tgse, (X (¢t + 1)).
6. Estimated(t+1)=YX(t+1)"
7
8:

Normalize: A(t + 1), A(t+1),

: = AW+, T,
end for
Output:  A(T)

column rank. This implies that the number of dictionary edensr < d, whered is the observed
dimension. In the overcomplete setting, the very recenksiof Agarwal et al.[[ll], 2] provide meth-
ods forapproximate recovergf the true dictionary. In this paper, we consider the cogeace of
alternating minimization procedures for optimizing theéemtive [2).

Summary of Results:  Our main result concerns the convergence to the global optirof al-
ternating minimization. Our result requires initializatvith a dictionary with an error of at most
O (1/s?) relative to the true dictionary. Further wher= O (d*/®) and number of samples satisfies
n = O (r?/s?), we establish the linear convergence of the alternatingmimation procedure to
the true dictionary. Combining our result with that of Agaitvet al. [1], where we initialize the
alternating method using their solution as an initialiaatiwe guarantee exact recovery of the true
dictionary given that = O (d'/°, r1/8), and sufficient number of samples= O (r?/s?)..

2 Algorithm

Notation: Let [n] := {1,2,...,n}. For a vectorv or a matrixW¥, we will use the shorthand
Supp(v) and Supp(WW) to denote the set of non-zero entrieswodnd W respectively. Let|w||
denote the/s norm of vectorw, and similarly for a matriX?’, |17 || denotes its spectral norm. For a
matrix X, X*, X; and X denote the" row, i column andi, j)"" element ofX respectively.

As descibed earlier, we alternate between two proceduiesasparse recovery step for estimating
the coefficients given a dictionary, and a least squaredatepdictionary given the estimates of the
coefficients. The details of this approach are presentedgarahm([1.

The sparse recovery step of Algoritiith 1 is basedpregularization, followed by thresholding.
The thresholding is required for us to guarantee that thpatiget of our coefficient estimafe(t)

is asubsetf the true support with high probability. Once we have aimgatie of the coefficients,
the dictionary is re-estimated through least squares. Vheath algorithmic scheme is popular for
dictionary learning, and there are a number of variants efoisic method. For instance, the
regularized problem in step 3 can also be replaced by otheist@parse recovery procedures such
as OMP[13] or GraDe$ [4]. More generally the exact lasso aasttsquares steps may be replaced
with other optimization methods for computational effiaggnre.g. [7].

3 Guarantees

In this section, we provide our main convergence result dsal eearly specify all the required
assumptions o™ and X *.

3.1 Assumptions and exact recovery result
We start by formally describing the assumptions needechfomain recovery result of this paper.

(A1) Incoherent Dictionary Elements: Wlog, assume that all the elements are normalized:
|A¥] = 1, for i € [r]. We assume pairwise incoherence condition on the dictyonar
elements, for some constan > 0, [(A7, A7)[ < 42.
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(A2) Spectral Condition on Dictionary Elements: The dictionary matrix has bounded spectral
norm, for some constam; > 0, |A*|| < p14/5.

(A3) Non-zero Entries in Coefficient Matrix: We assume that the non-zero entriesXof are
drawn i.i.d. from a zero-mean unit-variance distributiand satisfy the following a.s.:
| X+ < M, Vi,j.

(A4) Sparse Coefficient Matrix: The columns of coefficient matrix havenon-zero entries
which are selected uniformly at random from the set ofsadized subsets of]. We

. . 1/6 .
requires to satisfys < d—l/s, for universal constant, > 0.
C2,u,1

(A5) Sample Complexity: For a given failure parametér> 0, the number of samplesneeds
to satisfyn > c3 :—z log % wherecs > 0 is a universal constant.

A(6) Initial dictionary with guaranteed error bound: We assume that we have access to an
initial dictionary estimated(0) such thakg := min; [, min ey 41y 247 — A(0)i], <
1
259252 *

(A7) Choice of Parameters for Alternating Minimization: Algorithm[1 uses a sequence of

accuracy parametees = 1/2592s2 ande, 1 = %e

Assumption(A1) on normalization of dictionary elements is without loss ehgrality since we
can always rescale the dictionary elements and the comdsmp coefficients and obtain the same
observations. However, the incoherence assumption igatrincestablishing our guarantees. In
particular, incoherence also leads to a bound on the restrisometry property (RIP) constant [10].
The assumptior{A2) provides a bound on the spectral norm4f. Note that the incoherence
and spectral assumptions are satisfied with high probglilith.p.) when the dictionary elements
are randomly drawn from a mean-zero sub-gaussian distibuAssumption(A3) imposes some
natural constraints on the non-zero entriesXdf. AssumptioriA4) on sparsity in the coefficient
matrix is crucial for identifiability of the dictionary leaing problem. AssumptiofiA5) provides

a bound on sample complexity. Assumptiof6) establishes the radius of the local neighborhood
within which we need to initialize Algorithriil1 for our conggmce results to hold. Assumption
(AT) specifies the choice of accuracy parameters used by altegmaethod in Algorithnill. Due

to Assumption( A3) on sparsity levek, we have thal%%oﬁgls3 < 1 and the accuracy parameters in

(AT) form a decreasing sequence. This implies that in Algorfththd accuracy constraint becomes
more stringent with the iterations of the alternating mdtho

Given these assumptions, we now present our main resuldiegahe local linear convergence of
Algorithm[1.

Theorem 1 (Local linear convergence)Under assumptionsA1)-(A7),, with probability at least
1 — 26 the iterateA(t) of Algorithm[] satisfies the following for all> 1:

min [leA() - A, <@l <i<r

Remarks: The consequences of TheorEin 1 are powerful combined witissmmption(A4)
and the recurrence ifA7) (since(A4) ensures that; forms a decreasing sequence). In particular,
it is implied that with high probability we obtain,
. * * —t

er{n_lgl}\le(t)i A%illy < [JA(0) — A%[|,27"
Given the above bound, we need at mOstlog, <) in order to ensurdlzA(T), — A%, < €
for all the dictionary elements = 1,2,...,r. In the convex optimization parlance, the result
demonstrates a local linear convergence of Algorithm 1 éoglobally optimal solution under an
initialization condition. Another way of interpreting orgsult is that the global optimum hagasin
of attractionof sizeO (1/s?) for our alternating minimization procedure under theseimggions
(since we requirey < O (1/s?)).

We also observe that under the somewhat stronger assuntiption= O (d'/°, r1/8), and further
assuming a lower bound on the non-zero entrieX bfit is possible to use the results of Agarwal et
al. [1] or Arora et al.[[2] to guarantee that Assumptiots) is met. This leads to thexact recovery



0 Error vs Iteration (d=100, r=200, s=3) Error vs N (d=100, r=100, s=3, n=C s r log(r))

10 \ b A AN
_ @n=15srlogr]  —10° 2. YoWiVel
O &n=2srlogr 2 P
%107 9n=2.5srlogr b § Xr:d
2 +n=3srlogr 2 So, er:iz
=3 = S =
< n=35sriogn - a0 S'M 5 : r=8d
£107 £ g v
8 2 = Initialization &0, 8
u gl Y Lu 10 ©Alternating Minimization ﬁ §

07 3 i 5 H 015 25 3 3 . : 7 75

Feration NG, C (n=C s rlog(r))

Figure 1: (a): Average error after each step alternatingmiiation step of Algorithnil on log-
scale. (b): Average error after the initialization procedof Agarwal et al.[[1] and aftér alternating
minimization steps of Algorithil1. (c): Sample complexigguirement of the alternating minimiza-
tion algorithm. For ease of experiments, we initialize thiidnary using a random perturbation of
the true dictionary.

of the true dictionary in the context of the underlying diciary learning problem. We also recall
that the lasso step in Algorithinh 1 can be replaced with amifferobust sparse recovery procedure,
with qualitatively similar results.

4 Experiments

Alternating minimization/descent approaches have beetelwiused for dictionary learning and
several existing works show effectiveness of these metbodeal-world/synthetic datasets [3] 12].
Hence, instead of replicating those results, in this seatie focus on illustrating the following three
key properties of our algorithms via experiments in a cdlgdosetting: a) Advantage of alternat-
ing minimization over one-shot initialization, b) lineasrorergence of alternating minimization, c)
sample complexity of alternating minimization.

Data generation model Each entry of the dictionary matrid is chosen i.i.d. fromA/(0,1).
Note that, random Gaussian matrices are known to satisbherence and the spectral norm bound
[14]. The support of each column of was chosen independently and uniformly from the set
of all s-subsets ofir]. Similarly, each non-zero element & was chosen independently from
the uniform distribution of—2,—1] U [1,2]. We use the GraDeS algorithm 6f [4] to solve the
sparse recovery step, as it is faster than lasso. We measaréerethe recovery of dictionary by

error(A) = max; /1 — %. The first two plots are for a typical run and the third plot
averages over0 runs. The impIanentation is in Matlab.

Linear convergence In the first set of experiments, we fixed= 100, » = 200 and measured
error after each step of our algorithm for increasing vahlfes. Figure[1 (a) plots error observed
after each iteration of alternating minimization; the fotata point refers to the error incurred by the
initialization method. As expected due to Theofédm 1, we nlesa geometric decay in the error.
better for higher values of.

One-shot vs iterative algorithnt Itis conceivable that the initialization procedure ifsebkufficient

to obtain an estimate of the dictionary upto reasonableracgualternatingminimization procedure
of Algorithm[d. FigurelL(b) shows that this is not the casee Tiure plots the error in recovery
vs the number of samples used for both the approach of Agawall [1] and AlgorithniL. It is
clear that the recovery error of the alternating minim@atprocedure is significantly smaller than
that of the initialization procedure. For example, fo= 2.5sr log r with s = 3, r = 200, d = 100,
initialization incurs error of56 while alternating minimization incurs error ®6—6. Note however
that the recovery accuracy of the initialization procedsmon-trivial and also crucial to the success
of alternating minimization- a random vectortf would give an error ofl — 5 = 0.99, where as
the error after initialization procedure4s0.55.

Sample complexity Finally, we study sample complexity requirement of themdating minimiza-
tion algorithm which isn = O (r2 log r) according to Theorem 1, assuming good enough initial-
ization. FigurélL(c) suggests that in fact oihr) samples are sufficient for success of alternating
minimization. The figure plots the probability of succesthwespect ta: for various values of.
Atrial is said to succeed if at the end 2if iterations, the error is smaller thaf—¢. Since we focus
only on the sample complexity of alternating minimizatiorg use a faster initialization procedure:
we initialize the dictionary by randomly perturbing thedrdictionary asA(0) = A* + Z, where
each element of is anA/(0,0.5) random variable. Figuid 1 (c) shows that the success pridabi
transitions at nearly the same value for various values sfiggesting that the sample complexity
of the alternating minimization procedure in this regime et O (d) is justO(r).
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