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We want to fit a Markov random field to discrete data, but
don’t know the graph structure.

We can learn a sparse structure by using `1-regularization of
the edge parameters [Lee et al. 2006, Wainwright et al. 2006].
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Optimization with `1-Regularization

This requires solving an optimization problem of the form

min
x

f (x) +
n∑

i=1

λi |xi |1

Solving this optimization has 3 complicating factors:
1 the number of parameters is large
2 evaluating the objective is expensive
3 the objective is non-smooth

If the objective was smooth, we might consider Hessian-free
Newton methods or limited-memory quasi-Newton methods.

The non-smooth term is separable.
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Structure Learning with Group `1-Regularization
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In some cases, we want sparsity in groups of parameters:
1 Multi-parameter edges [Lee et al., 2006].
2 Blockwise-sparsity [Duchi et al., 2008].
3 Conditional random fields [Schmidt et al., 2008]
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In some cases, we want sparsity in groups of parameters:
1 Multi-parameter edges [Lee et al., 2006].
2 Blockwise-sparsity [Duchi et al., 2008].
3 Conditional random fields [Schmidt et al., 2008]
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Structure Learning with Group `1-Regularization

In these cases we might consider group `1-regularization:

min
x

f (x) +
∑
g

λg ||xg ||p

Typically, we use the `2-norm, `∞-norm, or nuclear norm.

Now, the non-smooth is term not even separable.

However, the non-smooth term is still simple.
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Group `1-Regularization with the `2 group norm.

Encourage group sparsity.
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Group `1-Regularization with the `∞ group norm.

Encourage group sparsity and parameter tieing.
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Group `1-Regularization with the nuclear group norm.

Encourage group sparsity and low-rank.
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In these cases we might consider group `1-regularization:
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Structure Learning with Structured Sparsity

Do we have to use pairwise models?

We can use structured sparsity [Bach, 2008, Zhao et al.,
2009] to learn sparse hierarchical models.

In this case we use overlapping group `1-regularization:

min
x

f (x) +
∑

A⊆{1,...,p}

λA(
∑

{B|A⊆B}

||xB ||22)1/2

Now, the non-smooth term is not even simple.

However, it is the sum of simple functions.
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A Basic Newton-like Method

We want first consider minimizing a twice-differentiable f (x).

Newton-like methods use a quadratic approximation of f (x):

Qk(x, α) , f (xk)+(x−xk)T∇f (xk)+
1

2α
(x−xk)THk(x−xk)

Hk is a positive-definite approximation of the Hessian.

The new iterate is set to the minimizer of the approximation

xk+1 ← xk − αdk ,

where dk is the solution to

Hkdk = ∇f (xk)

Guarantees descent for small enough α.
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Gradient Method and Newton’s Method

f(x)
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Armijo Inexact Line-Search

We first try an initial step size α and then decrease it until we
satisfy the Armijo sufficient decrease condition:

f (xk+1) ≤ f (xk) + η∇f (xk)T (xk+1 − x).

With Hermite interpolation and control of the spectrum of
Hk , we typically accept the initial α or backtrack only once.
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Rate of Convergence

Under suitable smoothness and convexity assumptions, the
method achieves a quadratic convergence rate:

It requires O(log log 1/ε) iterations to for ε-accuracy.

Any algorithm of the form

xk+1 ← xk − Bk∇f (xk)

has a superlinear local convergence rate around a strict
minimizer if and only if Bk eventually behaves like the inverse
Hessian [Dennis & Moré, 1974].
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Disadvantages of Pure Newton Method

For many problems, we can’t afford to compute the Hessian,
or even store an n by n matrix.

There are several limited-memory alternatives available:
1 Non-linear conjugate gradient.
2 Nesterov’s optimal gradient method.
3 Diagonally-scaled steepest descent.
4 Non-monotonic Barzilai-Borwein method.
5 Hessian-free Newton methods.
6 Limited-memory quasi-Newton methods.

This talk mainly focuses on the last two.
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HFN: Hessian-Free Newton Methods

We want to implement the step:

xk+1 ← xk − αdk .

where dk is the solution of the linear system

Hkd = ∇f (xk).

Hessian-free Newton (HFN): find dk with an iterative solver.

We typically use conjugate gradient (but others are possible).

Conjugate gradient only requires Hessian-vector products Hky.
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Compute Hessian-vector products

We can compute Hessian-vector products without explicitly
forming the Hessian.
Sometimes this is due to the structure of the Hessian
(∇2f (x) = ATDA for logistic regression)
Alternately, we can approximate the product numerically for
one gradient evaluation:

Hky ≈ ∇f (xk + µy)−∇f (xk)

µ
.

Under weak assumptions about f (xk), we can approximate
the Hessian-vector product without cancellation error with a
very small complex µ [Squire and Trapp, 1988]:

∇f (xk + iµy) = ∇f (xk) + iµHky +O(µ2).
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Rate of Convergence of Inexact Newton Methods

There is no need to solve to full accuracy, leading to a
residual:

Hkd = ∇f (xk) + rk .

Dembo, Eisenstat, Steihaug [1982] show fast convergence
rates when the residuals are smaller than the gradient:

1 Linear convergence: ||rk || ≤ ηk ||∇f (xk)|| with ηk < η < 1.
2 Superlinear convergence: limk→∞ ηk = 0.
3 Quadratic convergence: ηk = O(||∇f (xk)||).

For superlinear convergence, a typical forcing sequence is

ηk = min{.5,
√
||∇f (xk)||}
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Discussion of HFN Methods

Preconditioning often drastically reduces the number of
Hessian-vector products.

The conjugate gradient algorithm can be modified to give a
descent direction even if the Hessian is not positive-definite.

If the Hessian contains negative eigenvalues, the method may
be able to find a direction of negative curvature.

For details, Nocedal and Wright [2006, §7.1].
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Hessian-Free Newton Methods vs. Quasi-Newton Methods

The main difference between HFN and quasi-Newton methods:

Hessian-free methods approximately invert the Hessian.

Quasi-Newton methods invert an approximate Hessian.

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Motivation and Overview
L-BFGS and Hessian-Free Newton

Two-Metric (Sub-)Gradient Projection
Inexact Projected/Proximal Newton

Discussion

Hessian-Free Newton Methods
Limited-Memory Quasi-Newton Methods
Scaling L-BFGS, Barzilai-Borwein Method, Hybrid Methods

Hessian-Free Newton Methods vs. Quasi-Newton Methods

The main difference between HFN and quasi-Newton methods:

Hessian-free methods approximately invert the Hessian.

Quasi-Newton methods invert an approximate Hessian.

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Motivation and Overview
L-BFGS and Hessian-Free Newton

Two-Metric (Sub-)Gradient Projection
Inexact Projected/Proximal Newton

Discussion

Hessian-Free Newton Methods
Limited-Memory Quasi-Newton Methods
Scaling L-BFGS, Barzilai-Borwein Method, Hybrid Methods

Hessian-Free Newton Methods vs. Quasi-Newton Methods

The main difference between HFN and quasi-Newton methods:

Hessian-free methods approximately invert the Hessian.

Quasi-Newton methods invert an approximate Hessian.

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Motivation and Overview
L-BFGS and Hessian-Free Newton

Two-Metric (Sub-)Gradient Projection
Inexact Projected/Proximal Newton

Discussion

Hessian-Free Newton Methods
Limited-Memory Quasi-Newton Methods
Scaling L-BFGS, Barzilai-Borwein Method, Hybrid Methods

Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton Method

Quasi-Newton methods work with the parameter and gradient
differences between successive iterations:

sk , xk+1 − xk , yk , ∇f (xk+1)−∇f (xk).

They start with an initial approximation H0 , σI, and choose
Hk+1 to interpolate the gradient difference:

Hk+1sk = yk .

Since Hk+1 is not unique; the BFGS method chooses the
symmetric matrix whose difference with Hk is minimal:

Hk+1 = Hk − HkskskH
k

skHksk
+

yky
T
k

yTk sk
.
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Convergence and Limited-Memory BFGS (L-BFGS)

Update skipping/damping or a more sophisticated line search
(Wolfe conditions) can keep Hk+1 positive-definite.

The BFGS method has a superlinear convergence rate.

But, it still uses a dense Hk .

Instead of storing Hk , the limited-memory BFGS (L-BFGS)
method stores the previous m differences sk and yk .

We can solve a linear system involving these updates applied
to a diagonal H0 in O(mn) [Nocedal, 1980].
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L-BFGS Recursive Formula

Solving Hkdk = g given {H0, sk , yk} [Nocedal, 1980]:
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Scaling L-BFGS

The choice of H0 on each iteration is crucial to the
performance of L-BFGS methods.

A common choice is H0 = α−1bb I [Shanno & Phua, 1978]:

αbb = argmin
α
||sk − αIyk || = (sTk yk)/(yTk yk)

Convergence theory is not as nice for L-BFGS, but often
outperforms HFN and other competing approaches.
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Barzilai-Borwein Method

We can also consider the approximate quasi-Newton method:

xk+1 = xk − αbb∇f (xk).

This is the Barzilai & Borwein [1988] method.

The step size is typically used with a non-monotomic Armijo
condition [Grippo et al., 1986, Raydan et al., 1997]:

f (xk+1) ≤ max
j∈{k−m:k}

{f (xj)}+ η∇f (xk)T (xk+1 − x).

This simple method performs surprisingly well in a variety of
problems [Raydan et al., 1997, Birgin et al., 2000, Dai &
Fletcher, 2005, Figuereido et al., 2007, van den Berg and
Friedlander, 2008, Wright et al., 2010].
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Hybrid L-BFGS and Hessian-Free Methods

L-BFGS and HFN methods can be combined:

Use an L-BFGS approximation to precondition the conjugate
gradient iterations [Morales & Nocedal, 2000].

Use conjugate gradient iterations to to improve H0 in the
L-BFGS approximation [Morales & Nocedal, 2002] .
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Optimization with `1-Regularization

We want to optimize a smooth function with `1-regularization:

min
x

f (x) = `(x) +
n∑

i=1

λi |xi |

The non-smooth regularizer breaks quasi-Newton and
Hessian-free Newton methods.

But the regularizer is separable.

We consider two methods that take advantage of this:
1 Two-metric projection on an equivalent problem.
2 Two-metric sub-gradient projection applied directly.
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Converting to a Bound-Constrained Problem

We can re-write the non-smooth objective

min
x
`(x) +

n∑
i=1

λi |xi |,

as a smooth objective with non-negative constraints:

min
x
`(x+−x−) +

n∑
i=1

λi (x+
i + x−i ), subject to x+ ≥ 0, x− ≥ 0.

We can now use methods for bound-constrained optimization
of smooth objectives.
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Gradient Projection

A classic algorithm for bound-constrained problems is gradient
projection:

xk+1 ← [xk − α∇f (xk)]+.

The Armijo condition guarantees sufficient decrease and
global convergence.

However, the convergence rate may be vey slow.
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Gradient Projection for Non-Negative Constraints

f(x)
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Naive Two-Metric Projection

To speed convergence, we might consider projecting a
Newton-like step:

xk+1 ← [xk − αdk ]+,

where dk is the solution of

Hkdk = ∇f (xk).

This is known as a two-metric projection algorithm
(the gradient and projection norm are different).

This method does not work. It may not be possible to
guarantee descent even if Hk is positive-definite.
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Diagonal-Scaling and Spectral Projected Gradient (SPG)

We can guarantee descent with further restrictions on Hk .

For example, we can make Hk diagonal:

xk+1 ← [xk − αDk∇f (xk)]+

In the spectral projected gradient (SPG) method, we use the
Barzilai-Borwein step and non-monotonic Armijo condition:

xk+1 ← [xk − αbb∇f (xk)]+

[Birgin et al., 2000, Figueiredo et al., 2007]
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Two-Metric Projection

Do we need Hk to be diagonal?

To guarantee descent, it is sufficient that Hk is diagonal with
respect to a subset of the variables [Gafni & Bertsekas, 1984]:

A , {i |xk
i ≤ ε and ∇i f (xk) > 0}

Re-arranging variables, this leads to a scaling of the form

Hk =

[
Dk 0
0 H̄k

]
We want H̄k to approximate the sub-Hessian ∇2

F f (xk).
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Two-Metric Projection

We can thus write the two-metric projection step as:

xk+1
A ← [xkA − αDk∇Af (xk)]+

xk+1
F ← [xkF − αdk ]+

where dk is the solution of

H̄kdk = ∇F f (xk).

We can implement an HFN method by using conjugate
gradient to solve this system (very fast if solution is sparse).

We can implement an L-BFGS method by setting H̄k to the
L-BFGS approximation.
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Discussion of Two-Metric Projection

If the algorithm identifies the optimal manifold, it is equivalent
to the unconstrained method on the non-zero variables.

But should we convert to a bound-constrained problem in the
first place?

The number of variables is doubled.
The transformed problem might be harder
(the transformed problem is never strongly convex)

Can we apply tricks from bound-constrained optimization to
directly solve to `1-regularization problems?
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Non-Smooth Steepest Descent

Recall the motivating problem:

min
x

f (x) = `(x) +
n∑

i=1

λi |xi |

If f (x) is convex, the objective has sub-gradients and
directional derivatives everywhere.

We use zk to denote the minimum-norm sub-gradient:

zk = argmin
z∈∂f (xk )

||z||

The direction that minimizes the directional derivative is −zk .

This is the steepest descent direction for non-smooth convex
optimization problems.
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Non-Smooth Steepest Descent

For our problem:

min
x

f (x) = `(x) +
n∑

i=1

λi |xi |,

we can compute the minimum-norm sub-gradient
coordinate-wise because the `1-norm is separable:

zk
i ,


∇i`(x) + λi sign(xi ), |xi | > 0

∇i`(x)− λi sign(∇i`(x)), xi = 0, |∇i`(x)| > λi
0, xi = 0, |∇i`(x)| ≤ λi

This is the steepest descent direction for `1-regularization
problems.
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Scaled Non-Smooth Steepest Descent

We can consider a non-smooth steepest descent step:

xk+1 ← xk − αzk .

We can use zk in the Armijo condition to guarantee a
sufficient decrease.∗

We can even try a Newton-like version:

xk+1 ← xk − αdk ,

where dk solves Hkdk = zk .

However, there are two problems with this step:
1 The iterations are unlikely to be sparse.
2 It doesn’t guarantee descent, even if Hk is positive-definite.
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Scaled Non-Smooth Steepest Descent

To get sparse iterates, many authors use orthant projection:

xk+1 ← PO[xk − αdk , xk ],

where [Osborne et al., 2000, Andrew & Gao, 2007]

PO(y, x)i ,

{
0 if xiyi < 0

yi otherwise

Sets variables that change signs to exactly zero:
1 Effecitve at sparsifying the solution.
2 Restricts quadratic approximation to valid region.
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Two-Metric Sub-Gradient Projection

There are several ways to guarantee descent.

We could use a diagonal scaling Dk :

xk+1 ← PO[xk − αDkzk , xk ].

We could use the Barzilai-Borwein step with non-monotonic
line searches:

xk+1 ← PO[xk − αbbz
k , xk ].

We could make the scaling diagonal with respect to an
appropriate subset of the variables:

A , {i ||xk
i | ≤ ε}
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Two-Metric Sub-Gradient Projection

The latter leads to a two-metric sub-gradient projection
method:

xk+1
A ← PO[xkA − αDkzkA, x

k
A],

xk+1
F ← PO[xkF − αdk , xkF ],

where dk solves
H̄kdk = ∇F f (xk).

We can derive HFN and L-BFGS methods as before.

One choice of Dk might be the Barzilai-Borwein step αbbI.
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Advantages

The method has several appealing properties:

No variable doubling.

No losing strong convexity.

Gives sparse iterations.

Allows warm-starting.

Many variables can be set to zero at once.

Many variables can move away from zero at once.

If it identifies the optimal sparsity pattern, it is equivalent
Newton’s method on the non-zero variables.
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Practical Issues

For very large-scale problems with very spare solutions, practical
methods seem to need to consider two more issues:

Continuation: Start with a large value of λ and progressively
decrease it.

Sub-Optimization: Ignore variables that are unlikely to move
away from zero (temporarily or permanently).

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Motivation and Overview
L-BFGS and Hessian-Free Newton

Two-Metric (Sub-)Gradient Projection
Inexact Projected/Proximal Newton

Discussion

Bound-Constrained Formulation
Spectral Projected Gradient and Two-Metric Projection
Two-Metric Sub-Gradient Projection

Extensions

The algorithm extends to problems of the form

min
l�x�u

`(x) + r(x),

where r(x) is separable and differentiable almost everywhere.

Two-metric projection algorithms also exist for other
constraints [Gafni & Bertsekas, 1984].
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Discussion

There are several closely related methods for using curvature
in `1-regularization algorithms, including:

Perkins et al. [2003].
Andrew & Gao [2007].
Shi et al. [2007].
Kim & Park [2010].

While descent is guaranteed, convergence theory is not fully
developed:

Global convergence.
Active set identification.
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Problems with non-separable case

We now turn to the group `1-regularization problem:

min
x

f (x) = `(x) +
∑
g

λg ||xg ||2

The regularizer is not separable.

But the regularizer is simple.

We consider two methods that take advantage of this:

Inexact projected Newton on an equivalent problem.
Inexact proximal Newton applied directly.
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Converting to a Constrained Problem

We can introduce extra variables t to convert the problem
into a smooth optimization with cone constraints:

min
x,t

`(x) +
∑
g

λg tg , subject to ||xg ||2 ≤ tg , ∀g .

Alternately, we can the optimize over the norm ball:

min
x
`(x), subject to

∑
g

λg ||xg ||2 ≤ τ

In both cases the constraints are simple; we can compute the
projection in linear time [Boyd & Vandenberghe, 2004,
Exercise 8.3(c), van den Berg et al., 2008].
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Projected Gradient

Recall the basic projected gradient step:

xk+1 ← argmin
x∈C

||x− (xk − α∇f (xk))||22
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f(x)
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Projected Gradient

Recall the basic projected gradient step:

xk+1 ← argmin
x∈C

||x− (xk − α∇f (xk))||22

Feasible Set

f(x)

xk

xk - !!f(xk)

PC[xk - !!f(xk)]
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Projected Gradient and Projected Newton

To speed the convergence, we might consider a scaled step:

xk+1 ← argmin
x∈C

||x− (xk − αdk)||22,

where dk solves Hkdk = ∇f (xk).

As we saw, in general this does not work.

To guarantee descent, projected Newton methods project
under a quadratic norm:

xk+1 ← argmin
x∈C

||x− (xk − αdk)||2Hk ,

where ||y||Hk =
√

yTHky [Levitin & Polyak, 1966].
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Projected Newton

Projecting under the Hk norm is equivalent to minimizing the
quadratic approximation over the convex set:

xk+1 ← argmin
x∈C

Qk(x, α)

where

Qk(x, α) = f (xk)+(x−xk)T∇f (xk)+
1

2α
(x−xk)THk(x−xk)

In general, this projection will be expensive even if the
constraints are simple.

May be inexpensive if Hk is diagonal.
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Inexact Projected Newton

If we want to use a non-diagonal Hk , we can consider an
inexact projected Newton method.

Analogous to the unconstrained HFN methods, we compute
the step using a constrained iterative solver.

For example, we can minimize Qk(y, α) use SPG iterations:

yk+1 ← argmin
y∈C

||y − (yk − αbb∇yQk(y, α))||22.

These iterations are dominated by the cost of:

Euclidean projections and Hessian-vector products.
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Feasible Set

f(x)

xk
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Inexact Projected Newton

Can we terminate this early?

If we set y0 = xk , then f (yk) < f (xk) for k ≥ 1 (for α small).

Alternately, we can set α = 1 and show that dk = yk − xk is a
feasible descent direction for k ≥ 1.

In Schmidt et al. [2009], we used an L-BFGS approximation in an
inexact projected Newton method:

The (approximate-)Hessian-vector products take O(mn).

The SPG iterations use projections but not the objective.

Efficient for optimizing costly functions with simple
constraints.
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Proximal Operators

Can we avoid introducing constraints and directly solve the
original non-smooth group `1-regularization problem?

We can generalize projections to proximal operators:

proxr (xk) = argmin
x

1

2
||x− xk ||22 + r(x).

The group `1-regularizer is simple; we can efficiently compute
the proximal operator in linear time [Wright et al., 2009].

prox`1,2(xk)g = argmin
x

1

2
||xg − xkg ||22 + λg ||xg ||2

= sgn(xg ) max{0, ||xg ||2 − λg}
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Proximal Gradient and Proximal Newton

The basic proximal gradient step:

xk+1 ← argmin
x

1

2
||x− (xk − α∇f (xk))||22 + r(x)

To speed the convergence, we might consider a scaled step:

xk+1 ← argmin
x

1

2
||x− (xk − αdk)||22 + r(x),

where dk solves Hkdk = ∇f (xk).

But to ensure descent, we need to match the norms:

xk+1 ← argmin
x

1

2
||x− (xk − αdk)||2Hk + r(x)
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Inexact Proximal Newton

The proximal step under the Hk norm is equivalent to
minimizing αr(x) and the quadratic approximation:

xk+1 ← arg min
x
Qk(x, α) + αr(x)

This problem will be expensive even if r(x) is simple.

We could use a diagonal scaling or Barzilai-Borwein steps
[Hofling & Tibshirani, 2009, Wright et al., 2009].

To use a non-diagonal scaling, we can use an iterative solver:

Use Euclidean proximal operators and Hessian-vector products.
Guarantees descent after first iteration.
With an L-BFGS approximation, suitable for optimizing costly
objectives with simple regularizers.
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Discussion

Easily extends to other group norms:

`∞ norm: the projection/proximal operators can be computed
in O(n log n)/O(n) [Duchi et al., 2008, Quattoni et al., 2009,
Wright et al, 2009].

Nuclear norm: the projection/proximal operators can be
computed in O(n3/2) [Cai et al., 2010].

Convergence theory of inexact projected/proximal Newton is not
fully developed:

Proof of global convergence.

Accuracy needed for convergence rates.
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Sums of Simple Regularizers

Recall the overlapping group `1-regularization problem:

min
x

f (x) +
∑

A⊆{1,...,p}

λA(
∑

{B|A⊆B}

||xB ||22)1/2

This regularizer is not simple.

But, it is the sum of simple regularizers.

After converting to a constrained problem, we can use
Dykstra’s [1983] algorithm to compute the projection.

Bauschke & Combettes [2008] generalize Dykstra’s algorithm
to compute proximal operators for sums of simple functions.
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Other Non-Smooth Newton-like Methods

There is also recent work on other methods for computing the
proximal operator for overlapping group `1-regularization
[Jenatton et al., 2010, Kim & Xing, 2010, Liu & Ye, 2010,
Mairal et al., 2010].

Several other Newton-like methods for general non-smooth
optimization are available:

Incorporating the sub-differential into the quadratic
approximation [Yu et al., 2008].
Applying the basic method to a smoothed version of the
problem [Chen et al., 2010].
Augmented Lagrangian and dual augmented Lagrangian
methods [Tomioka et al., 2011].

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Motivation and Overview
L-BFGS and Hessian-Free Newton

Two-Metric (Sub-)Gradient Projection
Inexact Projected/Proximal Newton

Discussion

Sums of Simple Regularizers
Stochastic Objective
Summary

Other Non-Smooth Newton-like Methods

There is also recent work on other methods for computing the
proximal operator for overlapping group `1-regularization
[Jenatton et al., 2010, Kim & Xing, 2010, Liu & Ye, 2010,
Mairal et al., 2010].

Several other Newton-like methods for general non-smooth
optimization are available:

Incorporating the sub-differential into the quadratic
approximation [Yu et al., 2008].
Applying the basic method to a smoothed version of the
problem [Chen et al., 2010].
Augmented Lagrangian and dual augmented Lagrangian
methods [Tomioka et al., 2011].

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Motivation and Overview
L-BFGS and Hessian-Free Newton

Two-Metric (Sub-)Gradient Projection
Inexact Projected/Proximal Newton

Discussion

Sums of Simple Regularizers
Stochastic Objective
Summary

Inexact Objective Information

In some scenarios we may have a stochastic objective:

We may be using a Monte Carlo approximation.

We may be using a mini-batch.

There is work on stochastic variants:

Limited-memory quasi-Newton [Sunehag et al., 2009].

Hessian-free Newton [Martens, 2010].

Optimal Barzilai-Borwein [Swersky, unpublished].

However, they don’t share the fast convergence rates of
deterministic variants.
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Summary

Hessian-Free Newton and limited-memory BFGS methods are
two workhorses of unconstrained optimization.

Two-metric (sub-)gradient projection methods let us apply
these methods to problems with bound constraints or
non-differentiable but separable regularizers.

Inexact projected/proximal Newton methods are an appealing
approach to optimizing costly objective functions with simple
constraints or simple non-differentiable regularizers.
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