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Motivating Problem: Structure Learning in Discrete MRFs

@ We want to fit a Markov random field to discrete data, but
don’t know the graph structure.
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Motivating Problem: Structure Learning in Discrete MRFs

@ We want to fit a Markov random field to discrete data, but
don’t know the graph structure.

@ We can learn a sparse structure by using /;-regularization of
the edge parameters [Lee et al. 2006, Wainwright et al. 2006].
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Optimization with ¢;-Regularization

@ This requires solving an optimization problem of the form

mxin f(X) + Z )\,"X,"l
i=1
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Optimization with ¢;-Regularization

@ This requires solving an optimization problem of the form

mxin f(X) + Z )\,"X,"l
i=1

@ Solving this optimization has 3 complicating factors:
© the number of parameters is large
@ evaluating the objective is expensive
© the objective is non-smooth
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Optimization with ¢;-Regularization

@ This requires solving an optimization problem of the form

mxin f(X) + Z )\,"X,"l
i=1

@ Solving this optimization has 3 complicating factors:
© the number of parameters is large
@ evaluating the objective is expensive
© the objective is non-smooth
@ If the objective was smooth, we might consider Hessian-free
Newton methods or limited-memory quasi-Newton methods.
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Optimization with ¢;-Regularization

@ This requires solving an optimization problem of the form
n
mxin f(x)+ Z Ailxil1
i=1
@ Solving this optimization has 3 complicating factors:
© the number of parameters is large
@ evaluating the objective is expensive
© the objective is non-smooth
@ If the objective was smooth, we might consider Hessian-free
Newton methods or limited-memory quasi-Newton methods.
@ The non-smooth term is separable.
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Structure Learning with Group ¢;-Regularization

@ In some cases, we want sparsity in groups of parameters:
© Multi-parameter edges [Lee et al., 2006].
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@ In some cases, we want sparsity in groups of parameters:
© Multi-parameter edges [Lee et al., 2006].
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@ In some cases, we want sparsity in groups of parameters:

@ Multi-parameter edges [Lee et al., 2006].
@ Blockwise-sparsity [Duchi et al., 2008].
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@ In some cases, we want sparsity in groups of parameters:

@ Multi-parameter edges [Lee et al., 2006].
@ Blockwise-sparsity [Duchi et al., 2008].
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@ In some cases, we want sparsity in groups of parameters:

@ Multi-parameter edges [Lee et al., 2006].
@ Blockwise-sparsity [Duchi et al., 2008].
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@ In some cases, we want sparsity in groups of parameters:

@ Multi-parameter edges [Lee et al., 2006].
@ Blockwise-sparsity [Duchi et al., 2008].
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Structure Learning with Group ¢;-Regularization

@ In some cases, we want sparsity in groups of parameters:
© Multi-parameter edges [Lee et al., 2006].
@ Blockwise-sparsity [Duchi et al., 2008].
© Conditional random fields [Schmidt et al., 2008]
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@ In these cases we might consider group /1-regularization:

min f(x) + ZAnggllp
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@ In these cases we might consider group /1-regularization:

min f(x) + ZAnggllp

o Typically, we use the ¢>-norm, {,,-norm, or nuclear norm.
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@ Group /1-Regularization with the /> group norm.

@ Encourage group sparsity.
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@ Group /1-Regularization with the /., group norm.

@ Encourage group sparsity and parameter tieing.
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@ Group f1-Regularization with the nuclear group norm.

@ Encourage group sparsity and low-rank.
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@ In these cases we might consider group /1-regularization:

min f(x) + ZAnggllp

@ Typically, we use the ¢>-norm, {o,-norm, or nuclear norm.

@ Now, the non-smooth is term not even separable.
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@ In these cases we might consider group /1-regularization:

min f(x) + ZAnggllp

Typically, we use the £>-norm, {-norm, or nuclear norm.

Now, the non-smooth is term not even separable.

However, the non-smooth term is still simple.
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@ Do we have to use pairwise models?
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Structure Learning with Structured Sparsity

@ Do we have to use pairwise models?

@ We can use structured sparsity [Bach, 2008, Zhao et al.,
2009] to learn sparse hierarchical models.
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Structure Learning with Structured Sparsity

@ Do we have to use pairwise models?

@ We can use structured sparsity [Bach, 2008, Zhao et al.,
2009] to learn sparse hierarchical models.

@ In this case we use overlapping group f1-regularization:

minf()+ > Al S lxslB)Y?

AC{1..p}  {BIACB}
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Structure Learning with Structured Sparsity

@ Do we have to use pairwise models?

@ We can use structured sparsity [Bach, 2008, Zhao et al.,
2009] to learn sparse hierarchical models.

@ In this case we use overlapping group f1-regularization:

minf()+ > Al S lxslB)Y?

AC{1..p}  {BIACB}

@ Now, the non-smooth term is not even simple.
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Structure Learning with Structured Sparsity

Do we have to use pairwise models?

We can use structured sparsity [Bach, 2008, Zhao et al.,
2009] to learn sparse hierarchical models.

@ In this case we use overlapping group f1-regularization:

minf()+ > Al S lxslB)Y?

AC{1..p}  {BIACB}

Now, the non-smooth term is not even simple.

However, it is the sum of simple functions.
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© L-BFGS and Hessian-Free Newton
@ Hessian-Free Newton Methods
@ Limited-Memory Quasi-Newton Methods
@ Scaling L-BFGS, Barzilai-Borwein Method, Hybrid Methods
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A Basic Newton-like Method

@ We want first consider minimizing a twice-differentiable f(x).
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A Basic Newton-like Method

@ We want first consider minimizing a twice-differentiable f(x).
e Newton-like methods use a quadratic approximation of f(x):

O (x,a) 2 f(xk)+(x—xk)TVf(xk)+i(x—xk)THk(x—xk)

o HX is a positive-definite approximation of the Hessian.
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A Basic Newton-like Method

@ We want first consider minimizing a twice-differentiable f(x).
e Newton-like methods use a quadratic approximation of f(x):

O (x,a) 2 f(xk)+(x—xk)TVf(xk)+i(x—xk)THk(x—xk)

o HX is a positive-definite approximation of the Hessian.
@ The new iterate is set to the minimizer of the approximation
x 1 xk — adk,
where d* is the solution to

H d" = V£(x")
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A Basic Newton-like Method

@ We want first consider minimizing a twice-differentiable f(x).
e Newton-like methods use a quadratic approximation of f(x):

O (x,a) 2 f(xk)+(x—xk)TVf(xk)+i(x—xk)THk(x—xk)

o HX is a positive-definite approximation of the Hessian.
@ The new iterate is set to the minimizer of the approximation
x 1 xk — adk,
where d* is the solution to
H d" = V£(x")

@ Guarantees descent for small enough «.
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Gradient Method and Newton's Method

f(x)
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Gradient Method and Newton's Method

xk - aVE(xk) |

Mark Schmidt, NIPS Optimization Workshop 2010
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Gradient Method and Newton's Method
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Armijo Inexact Line-Search

@ We first try an initial step size a and then decrease it until we
satisfy the Armijo sufficient decrease condition:

F(xM) < F(xX) + nVF(x) T (x1 - x).
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Armijo Inexact Line-Search

@ We first try an initial step size a and then decrease it until we
satisfy the Armijo sufficient decrease condition:

F(xM) < F(xX) + nVF(x) T (x1 - x).

@ With Hermite interpolation and control of the spectrum of
HX, we typically accept the initial o or backtrack only once.
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Rate of Convergence

@ Under suitable smoothness and convexity assumptions, the
method achieves a quadratic convergence rate:
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Rate of Convergence

@ Under suitable smoothness and convexity assumptions, the
method achieves a quadratic convergence rate:

o It requires O(loglog1/¢) iterations to for e-accuracy.
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Rate of Convergence

@ Under suitable smoothness and convexity assumptions, the
method achieves a quadratic convergence rate:

o It requires O(loglog1/¢) iterations to for e-accuracy.

e Any algorithm of the form
xkHL o xk — Bka(xk)

has a superlinear local convergence rate around a strict
minimizer if and only if B¥ eventually behaves like the inverse
Hessian [Dennis & Moré, 1974].
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Disadvantages of Pure Newton Method

@ For many problems, we can't afford to compute the Hessian,
or even store an n by n matrix.
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Disadvantages of Pure Newton Method

@ For many problems, we can't afford to compute the Hessian,
or even store an n by n matrix.

@ There are several limited-memory alternatives available:

Non-linear conjugate gradient.

Nesterov's optimal gradient method.
Diagonally-scaled steepest descent.
Non-monotonic Barzilai-Borwein method.
Hessian-free Newton methods.
Limited-memory quasi-Newton methods.

000000

@ This talk mainly focuses on the last two.
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HFEN: Hessian-Free Newton Methods

@ We want to implement the step:
xkH o xk — ad”.
where d¥ is the solution of the linear system

H*d = V£(x¥).
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HFEN: Hessian-Free Newton Methods

@ We want to implement the step:
XK xk — adk.
where d¥ is the solution of the linear system
H*d = V£(x¥).

o Hessian-free Newton (HFN): find d* with an iterative solver.
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HFEN: Hessian-Free Newton Methods

@ We want to implement the step:
XK xk — adk.
where d¥ is the solution of the linear system
H*d = V£(x¥).

o Hessian-free Newton (HFN): find d* with an iterative solver.

e We typically use conjugate gradient (but others are possible).
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HFEN: Hessian-Free Newton Methods

@ We want to implement the step:
XK xk — adk.
where d¥ is the solution of the linear system
H*d = V£(x¥).

o Hessian-free Newton (HFN): find d* with an iterative solver.
e We typically use conjugate gradient (but others are possible).

e Conjugate gradient only requires Hessian-vector products HXy.
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Compute Hessian-vector products

@ We can compute Hessian-vector products without explicitly
forming the Hessian.
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Compute Hessian-vector products

@ We can compute Hessian-vector products without explicitly
forming the Hessian.

@ Sometimes this is due to the structure of the Hessian
(V2f(x) = AT DA for logistic regression)
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Compute Hessian-vector products

@ We can compute Hessian-vector products without explicitly
forming the Hessian.

@ Sometimes this is due to the structure of the Hessian
(V2f(x) = AT DA for logistic regression)

@ Alternately, we can approximate the product numerically for
one gradient evaluation:

VE(xK + py) — VF(xF)
p .

Hky ~~
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Compute Hessian-vector products

@ We can compute Hessian-vector products without explicitly
forming the Hessian.

@ Sometimes this is due to the structure of the Hessian
(V2f(x) = AT DA for logistic regression)

@ Alternately, we can approximate the product numerically for
one gradient evaluation:

VE(xK + py) — VF(xF)
p .

o Under weak assumptions about f(x*), we can approximate
the Hessian-vector product without cancellation error with a
very small complex ;. [Squire and Trapp, 1988]:

VF(xK + ipy) = V() + ipH*y + O(12).

Hky ~~

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



L-BFGS and Hessian-Free Newton Hessian-Free Newton Methods
Limited-Memory Quasi-Newton Methods
Scaling L-BFGS, Barzilai-Borwein Method, Hybrid Methods

Rate of Convergence of Inexact Newton Methods

@ There is no need to solve to full accuracy, leading to a
residual:
H*d = V£(x¥) 4 rk.
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Rate of Convergence of Inexact Newton Methods

@ There is no need to solve to full accuracy, leading to a
residual:

H*d = V£(x¥) 4 rk.

e Dembo, Eisenstat, Steihaug [1982] show fast convergence
rates when the residuals are smaller than the gradient:
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Rate of Convergence of Inexact Newton Methods

@ There is no need to solve to full accuracy, leading to a
residual:

H*d = V£ (x¥) +r*.
e Dembo, Eisenstat, Steihaug [1982] show fast convergence
rates when the residuals are smaller than the gradient:
@ Linear convergence: ||rk|| < nk||VF(x¥)|| with n* <7 < 1.
@ Superlinear convergence: limy_ 7% = 0.
© Quadratic convergence: n* = O(||V£(x¥)|]).
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Rate of Convergence of Inexact Newton Methods

@ There is no need to solve to full accuracy, leading to a
residual:
H*d = V£(x¥) 4 rk.
e Dembo, Eisenstat, Steihaug [1982] show fast convergence
rates when the residuals are smaller than the gradient:
@ Linear convergence: ||rk|| < nk||VF(x¥)|| with n* <7 < 1.
@ Superlinear convergence: limy_ 7% = 0.
© Quadratic convergence: n* = O(||V£(x¥)|]).

o For superlinear convergence, a typical forcing sequence is

0" = min{.5,\/||VF(x¥)[[}
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Discussion of HFN Methods

@ Preconditioning often drastically reduces the number of
Hessian-vector products.
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Discussion of HFN Methods

@ Preconditioning often drastically reduces the number of
Hessian-vector products.

@ The conjugate gradient algorithm can be modified to give a
descent direction even if the Hessian is not positive-definite.

Quasi-Newton and Hessian-Free Methods for NSO
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Discussion of HFN Methods

@ Preconditioning often drastically reduces the number of
Hessian-vector products.

@ The conjugate gradient algorithm can be modified to give a
descent direction even if the Hessian is not positive-definite.

@ If the Hessian contains negative eigenvalues, the method may
be able to find a direction of negative curvature.
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Discussion of HFN Methods

Preconditioning often drastically reduces the number of
Hessian-vector products.

The conjugate gradient algorithm can be modified to give a
descent direction even if the Hessian is not positive-definite.

@ If the Hessian contains negative eigenvalues, the method may
be able to find a direction of negative curvature.

For details, Nocedal and Wright [2006, §7.1].
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Hessian-Free Newton Methods vs. Quasi-Newton Methods

The main difference between HFN and quasi-Newton methods:
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Hessian-Free Newton Methods vs. Quasi-Newton Methods

The main difference between HFN and quasi-Newton methods:

@ Hessian-free methods approximately invert the Hessian.
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Hessian-Free Newton Methods vs. Quasi-Newton Methods

The main difference between HFN and quasi-Newton methods:
@ Hessian-free methods approximately invert the Hessian.

@ Quasi-Newton methods invert an approximate Hessian.
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Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton Method

@ Quasi-Newton methods work with the parameter and gradient
differences between successive iterations:

sk 2 xME —xk oy 2 V(XM — V(xK).
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Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton Method

@ Quasi-Newton methods work with the parameter and gradient
differences between successive iterations:

sk 2 xME —xk oy 2 V(XM — V(xK).

@ They start with an initial approximation H® £ o1, and choose
H*1 to interpolate the gradient difference:

k+1
H+Sk:yk.
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Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton Method

@ Quasi-Newton methods work with the parameter and gradient
differences between successive iterations:

sk 2 xME —xk oy 2 V(XM — V(xK).

@ They start with an initial approximation H® £ o1, and choose
H*1 to interpolate the gradient difference:

k+1
H+Sk:yk.

e Since H**1 is not unique; the BFGS method chooses the
symmetric matrix whose difference with HX is minimal:

Hfses HE  yiy/]

k1 _ gk
H™ =H scHks) y/ sk
k Ok
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Convergence and Limited-Memory BFGS (L-BFGS)

e Update skipping/damping or a more sophisticated line search
(Wolfe conditions) can keep H**! positive-definite.
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Convergence and Limited-Memory BFGS (L-BFGS)

e Update skipping/damping or a more sophisticated line search
(Wolfe conditions) can keep H**! positive-definite.

@ The BFGS method has a superlinear convergence rate.
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Convergence and Limited-Memory BFGS (L-BFGS)

e Update skipping/damping or a more sophisticated line search
(Wolfe conditions) can keep H**! positive-definite.

@ The BFGS method has a superlinear convergence rate.

e But, it still uses a dense HX.
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Convergence and Limited-Memory BFGS (L-BFGS)

Update skipping/damping or a more sophisticated line search
(Wolfe conditions) can keep H**! positive-definite.

The BFGS method has a superlinear convergence rate.

But, it still uses a dense HX.

Instead of storing H, the limited-memory BFGS (L-BFGS)
method stores the previous m differences s, and yy.
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Convergence and Limited-Memory BFGS (L-BFGS)

e Update skipping/damping or a more sophisticated line search
(Wolfe conditions) can keep H**! positive-definite.

@ The BFGS method has a superlinear convergence rate.

o But, it still uses a dense HX.

o Instead of storing H¥, the limited-memory BFGS (L-BFGS)
method stores the previous m differences s, and yy.

@ We can solve a linear system involving these updates applied

to a diagonal H® in O(mn) [Nocedal, 1980].
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Solving H¥d* = g given {H°, s, y,} [Nocedal, 1980]:

gl k+l) = o
for 1 = k:-1:1

alii) = rof(i)*s(:, 11" *gi:,i+1):
gl:, i) = qgi:,i+lj-al{i)*y(:,1):

end
r{:,1) = HOWqi:,1);
for 1 = 1:k

be(i) = rof(i)*y(:, i)' *ri:,1);

ri:,i+1) = i:,1}
end
d=ri{:,k+1);

Mark Schmidt, NIPS Optimization Workshop 2010

+ s(:,i)*(al(i)-be(i)):

Quasi-Newton and Hessian-Free Methods for NSO



L-BFGS and Hessian-Free Newton Hessian-Free Newton Methods
Limited-Memory Quasi-Newton Methods
Scaling L-BFGS, Barzilai-Borwein Method, Hybrid Methods

Scaling L-BFGS

@ The choice of H? on each iteration is crucial to the
performance of L-BFGS methods.
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Scaling L-BFGS

@ The choice of H? on each iteration is crucial to the
performance of L-BFGS methods.

o A common choice is H? = a1 [Shanno & Phua, 1978]:

app = argmin |[sk — alyk|| = (s{ yi) /(Y4 yk)
[0
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Scaling L-BFGS

@ The choice of H? on each iteration is crucial to the
performance of L-BFGS methods.

o A common choice is H? = a1 [Shanno & Phua, 1978]:
_ : — (T T
app = argmin [[s, — adyi|| = (s, yi)/(Yic &)
(0%

@ Convergence theory is not as nice for L-BFGS, but often
outperforms HFN and other competing approaches.
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Barzilai-Borwein Method

@ We can also consider the approximate quasi-Newton method:

XL = xk — a VF(xK).
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Barzilai-Borwein Method

@ We can also consider the approximate quasi-Newton method:
XL = xk — a VF(xK).

@ This is the Barzilai & Borwein [1988] method.
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Barzilai-Borwein Method

@ We can also consider the approximate quasi-Newton method:
XL = xk — a VF(xK).

@ This is the Barzilai & Borwein [1988] method.

@ The step size is typically used with a non-monotomic Armijo
condition [Grippo et al., 1986, Raydan et al., 1997]:

f(ka) < max {f(xj)} + 77Vf(xk)T(kar1 — x).
Jje{k—m:k}
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Barzilai-Borwein Method

@ We can also consider the approximate quasi-Newton method:
XL = xk — a VF(xK).

@ This is the Barzilai & Borwein [1988] method.
@ The step size is typically used with a non-monotomic Armijo
condition [Grippo et al., 1986, Raydan et al., 1997]:
F(xX*) < max  {f(¥)} +nVF(xK)T(x*1 - x).
Jje{k—m:k}
@ This simple method performs surprisingly well in a variety of
problems [Raydan et al., 1997, Birgin et al., 2000, Dai &

Fletcher, 2005, Figuereido et al., 2007, van den Berg and
Friedlander, 2008, Wright et al., 2010].
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Hybrid L-BFGS and Hessian-Free Methods

L-BFGS and HFN methods can be combined:
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Hybrid L-BFGS and Hessian-Free Methods

L-BFGS and HFN methods can be combined:

@ Use an L-BFGS approximation to precondition the conjugate
gradient iterations [Morales & Nocedal, 2000].
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Hybrid L-BFGS and Hessian-Free Methods

L-BFGS and HFN methods can be combined:

@ Use an L-BFGS approximation to precondition the conjugate
gradient iterations [Morales & Nocedal, 2000].

@ Use conjugate gradient iterations to to improve H? in the
L-BFGS approximation [Morales & Nocedal, 2002] .
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Outline

© Two-Metric (Sub-)Gradient Projection
@ Bound-Constrained Formulation
@ Spectral Projected Gradient and Two-Metric Projection
@ Two-Metric Sub-Gradient Projection
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Optimization with ¢;-Regularization

@ We want to optimize a smooth function with ¢;-regularization:

mxin f(x) = ¢(x) + Z il xil
i=1
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Optimization with ¢;-Regularization

@ We want to optimize a smooth function with ¢;-regularization:
n
mxin f(x) = £(x) + Z Ailxil
i=1

@ The non-smooth regularizer breaks quasi-Newton and
Hessian-free Newton methods.
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Optimization with ¢;-Regularization

@ We want to optimize a smooth function with ¢;-regularization:
n
min f(x) = £(x) + Ai|xi
in () = €0+ 3 M
@ The non-smooth regularizer breaks quasi-Newton and

Hessian-free Newton methods.

@ But the regularizer is separable.
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Optimization with ¢;-Regularization

@ We want to optimize a smooth function with ¢;-regularization:
n
mxin f(x) = £(x) + Z Ailxil
i=1

@ The non-smooth regularizer breaks quasi-Newton and
Hessian-free Newton methods.

@ But the regularizer is separable.

@ We consider two methods that take advantage of this:

@ Two-metric projection on an equivalent problem.
@ Two-metric sub-gradient projection applied directly.
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Converting to a Bound-Constrained Problem

@ We can re-write the non-smooth objective
n

min /(x) + Z Ailxil,
i=1

as a smooth objective with non-negative constraints:

X

n
min E(x+—x_)+z Ai(xF +x;7), subject to x> 0,x~ > 0.
i=1
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Converting to a Bound-Constrained Problem

@ We can re-write the non-smooth objective
n

min /(x) + Z Ailxil,
i=1

as a smooth objective with non-negative constraints:

X

n
min E(x+—x_)+z Ai(xF +x;7), subject to x> 0,x~ > 0.
i=1

@ We can now use methods for bound-constrained optimization
of smooth objectives.
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Gradient Projection

@ A classic algorithm for bound-constrained problems is gradient
projection:
XL [xk — aVF(xA)]T.
@ The Armijo condition guarantees sufficient decrease and
global convergence.

@ However, the convergence rate may be vey slow.
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Gradient Projection for Non-Negative Constraints

f(x)
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Gradient Projection for Non-Negative Constraints

f(x)
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Gradient Projection for Non-Negative Constraints

Feasible Set
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Gradient Projection for Non-Negative Constraints

f(x)
Feasible Set
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Gradient Projection for Non-Negative Constraints

Feasible Set

xk - aVE(xk)
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Gradient Projection for Non-Negative Constraints
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Gradient Projection for Non-Negative Constraints

Feasible Set

- aVE(xk)

A4

- (fo(Xk)]+

T
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Naive Two-Metric Projection

@ To speed convergence, we might consider projecting a
Newton-like step:

k1 [xk _ adk]+,
where d is the solution of

HYd* = Vf(x¥).
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Naive Two-Metric Projection

@ To speed convergence, we might consider projecting a
Newton-like step:

K+l [xk _ adk]+,
where d is the solution of
HYd* = Vf(x¥).

@ This is known as a two-metric projection algorithm
(the gradient and projection norm are different).
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Naive Two-Metric Projection

@ To speed convergence, we might consider projecting a
Newton-like step:

K+l [xk _ adk]+,
where d is the solution of
HYd* = Vf(x¥).

@ This is known as a two-metric projection algorithm
(the gradient and projection norm are different).

@ This method does not work. It may not be possible to
guarantee descent even if H¥ is positive-definite.
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Naive Two-Metric Projection

Feasible Set

- aVI(xk)

A4

- (fo(Xk)]+

T
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Naive Two-Metric Projection

[xk - aVI(xK)]*

5
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Naive Two-Metric Projection

Feasible Set

- an(xk)]+

Jt
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Naive Two-Metric Projection

[xk - aVI(xK)]*

5
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Naive Two-Metric Projection

[xk - aVI(xK)]*

5
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Diagonal-Scaling and Spectral Projected Gradient (SPG)

@ We can guarantee descent with further restrictions on H¥.
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Diagonal-Scaling and Spectral Projected Gradient (SPG)

@ We can guarantee descent with further restrictions on H¥.

@ For example, we can make H* diagonal:

X1 [xK — aD*VF(x)] T
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Diagonal-Scaling and Spectral Projected Gradient (SPG)

@ We can guarantee descent with further restrictions on H¥.

@ For example, we can make H* diagonal:
X [xk — aD*VF(xF)]T

@ In the spectral projected gradient (SPG) method, we use the
Barzilai-Borwein step and non-monotonic Armijo condition:

XL [xK — app V(X

[Birgin et al., 2000, Figueiredo et al., 2007]
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Two-Metric Projection

e Do we need H* to be diagonal?
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Two-Metric Projection

e Do we need H* to be diagonal?

e To guarantee descent, it is sufficient that H* is diagonal with
respect to a subset of the variables [Gafni & Bertsekas, 1984]:

A 2 {i|xF < e and V,f(x¥) > 0}
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Two-Metric Projection

e Do we need H* to be diagonal?

e To guarantee descent, it is sufficient that H* is diagonal with
respect to a subset of the variables [Gafni & Bertsekas, 1984]:

A 2 {i|xF < e and V,f(x¥) > 0}

@ Re-arranging variables, this leads to a scaling of the form

Dk 0
k— —
vl A
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Two-Metric Projection

e Do we need H* to be diagonal?

e To guarantee descent, it is sufficient that H* is diagonal with
respect to a subset of the variables [Gafni & Bertsekas, 1984]:

A 2 {i|xF < e and V,f(x¥) > 0}

@ Re-arranging variables, this leads to a scaling of the form

Dk 0
k— —
vl A

o We want H¥ to approximate the sub-Hessian V2-f(x*).
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Two-Metric Projection

@ We can thus write the two-metric projection step as:
k+1 k k k
xA+ — [x4 —aD"*V 4f(x )]+
k+1 k k1+
X7 [xF — ad"]
where d* is the solution of

HYd* = Vf(x¥).
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Two-Metric Projection

@ We can thus write the two-metric projection step as:
xﬁ“ — x5 — aD V(X
x5t [x5 — ad]*
where d* is the solution of
HYd* = Vf(x¥).

@ We can implement an HFN method by using conjugate
gradient to solve this system (very fast if solution is sparse).
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Two-Metric Projection

@ We can thus write the two-metric projection step as:
xﬁ“ — x5 — aD V(X
x5t [x5 — ad]*
where d* is the solution of
HYd* = Vf(x¥).

@ We can implement an HFN method by using conjugate
gradient to solve this system (very fast if solution is sparse).

@ We can implement an L-BFGS method by setting H¥ to the
L-BFGS approximation.
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Discussion of Two-Metric Projection

o If the algorithm identifies the optimal manifold, it is equivalent
to the unconstrained method on the non-zero variables.
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Discussion of Two-Metric Projection

o If the algorithm identifies the optimal manifold, it is equivalent
to the unconstrained method on the non-zero variables.
@ But should we convert to a bound-constrained problem in the
first place?
e The number of variables is doubled.
e The transformed problem might be harder
(the transformed problem is never strongly convex)
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Discussion of Two-Metric Projection

o If the algorithm identifies the optimal manifold, it is equivalent
to the unconstrained method on the non-zero variables.
@ But should we convert to a bound-constrained problem in the
first place?
o The number of variables is doubled.
e The transformed problem might be harder
(the transformed problem is never strongly convex)
@ Can we apply tricks from bound-constrained optimization to
directly solve to ¢1-regularization problems?
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Non-Smooth Steepest Descent

@ Recall the motivating problem:

min f(x) = £(x) + Y _ Ailxi|
i=1
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Non-Smooth Steepest Descent

@ Recall the motivating problem:
n
min f(x) = £(x) + ; Ailxil

e If f(x) is convex, the objective has sub-gradients and
directional derivatives everywhere.
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Non-Smooth Steepest Descent

@ Recall the motivating problem:
n
min f(x) = £(x) + ; Ailxil

e If f(x) is convex, the objective has sub-gradients and
directional derivatives everywhere.

@ We use z¥ to denote the minimum-norm sub-gradient:

z¥ = argmin ||z]|

z€9f(xk)
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Non-Smooth Steepest Descent

@ Recall the motivating problem:
n
min f(x) = £(x) + ; Ailxil

e If f(x) is convex, the objective has sub-gradients and
directional derivatives everywhere.

@ We use z¥ to denote the minimum-norm sub-gradient:

z¥ = argmin ||z]|

z€9f(xk)

@ The direction that minimizes the directional derivative is —z.
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Non-Smooth Steepest Descent

@ Recall the motivating problem:
n
min f(x) = £(x) + ; Ailxil

e If f(x) is convex, the objective has sub-gradients and
directional derivatives everywhere.

@ We use z¥ to denote the minimum-norm sub-gradient:

z¥ = argmin ||z]|

z€9f(xk)

@ The direction that minimizes the directional derivative is —z.

@ This is the steepest descent direction for non-smooth convex
optimization problems.
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Non-Smooth Steepest Descent

@ For our problem:
n
min f(x) = £(x) + ; Ailxil,
we can compute the minimum-norm sub-gradient

coordinate-wise because the #1-norm is separable:

Vil(x) + A; sign(x;), xi| >0
Z-k £ V,-E(x) — A\ sign(V,-E(x)), x; =0, |V,€(X)’ > \;
0, xi =0,|Vil(x)| <\
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Non-Smooth Steepest Descent

@ For our problem:
n
min f(x) = £(x) + ;)\;]x,-|,

we can compute the minimum-norm sub-gradient
coordinate-wise because the #1-norm is separable:

Vil(x) + A; sign(x;), xi| >0
Z-k £ V,-E(x) — A\ sign(V,-E(x)), x; =0, |V,€(X)’ > \;
0, xi =0,|Vil(x)| <\

@ This is the steepest descent direction for ¢1-regularization
problems.
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Scaled Non-Smooth Steepest Descent

@ We can consider a non-smooth steepest descent step:

XI(—"_:l — Xk — azk.
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Scaled Non-Smooth Steepest Descent

@ We can consider a non-smooth steepest descent step:

XI(—"_:l — Xk — azk.

e We can use z¥ in the Armijo condition to guarantee a
sufficient decrease.*

@ We can even try a Newton-like version:
KL xk ok,

where d* solves H*d¥ = z.
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Scaled Non-Smooth Steepest Descent

@ We can consider a non-smooth steepest descent step:

XI(—"_:l — Xk — azk.

e We can use z¥ in the Armijo condition to guarantee a
sufficient decrease.*

@ We can even try a Newton-like version:
KL xk ok,

where d* solves H*d¥ = z.

@ However, there are two problems with this step:

© The iterations are unlikely to be sparse.
@ It doesn't guarantee descent, even if Hx is positive-definite.
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Scaled Non-Smooth Steepest Descent

@ To get sparse iterates, many authors use orthant projection:
X1 Po[xk — adk x4,
where [Osborne et al., 2000, Andrew & Gao, 2007]

Poly. x); 2 0 ifxy <0
e y; otherwise

@ Sets variables that change signs to exactly zero:

© Effecitve at sparsifying the solution.
@ Restricts quadratic approximation to valid region.
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Orthant Projection
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Orthant Projection
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Orthant Projection
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Orthant Projection
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Orthant Projection

Orthant of xk
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Two-Metric Sub-Gradient Projection

@ There are several ways to guarantee descent.
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Two-Metric Sub-Gradient Projection

@ There are several ways to guarantee descent.
o We could use a diagonal scaling D*:

X1 Po[xk — aDkZk xA].
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Two-Metric (Sub-)Gradient Projection

Two-Metric Sub-Gradient Projection

@ There are several ways to guarantee descent.
o We could use a diagonal scaling D*:
X1 Po[xk — aDkZk xA].

@ We could use the Barzilai-Borwein step with non-monotonic
line searches:

xkH1 Po[xk — appz”, xk].
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Two-Metric Sub-Gradient Projection

@ There are several ways to guarantee descent.
o We could use a diagonal scaling D*:

X1 Po[xk — aDkZk xA].

@ We could use the Barzilai-Borwein step with non-monotonic
line searches:

xkH1 Po[xk — appz”, xk].

@ We could make the scaling diagonal with respect to an
appropriate subset of the variables:

A £ {illxf| < ¢}
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Two-Metric Sub-Gradient Projection

@ The latter leads to a two-metric sub-gradient projection

method:

k+1 k k_k k

xAJr — Polx — aD"z’, x7],
k+1 k k K

x5t Po[xs — ad® x5,

where d¥ solves
HKdK = V£ (x5).
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Two-Metric Sub-Gradient Projection

@ The latter leads to a two-metric sub-gradient projection

method:

k+1 k k_k k

xAJr — Polx — aD"z’, x7],
k+1 k k K

x5t Po[xs — ad® x5,

where d¥ solves
HKdK = V£ (x5).

@ We can derive HFN and L-BFGS methods as before.
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Two-Metric Sub-Gradient Projection

@ The latter leads to a two-metric sub-gradient projection

method:

k41 k k ok k
xAJr — Polx — aD"z’, x7],

x?‘l — Polx — ad® x&],
where d* solves B
HKdK = V£ (x5).
@ We can derive HFN and L-BFGS methods as before.

@ One choice of D¥ might be the Barzilai-Borwein step appl.
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Advantages

The method has several appealing properties:
No variable doubling.
No losing strong convexity.

Gives sparse iterations.

°
°

°

o Allows warm-starting.
@ Many variables can be set to zero at once.

@ Many variables can move away from zero at once.
°

If it identifies the optimal sparsity pattern, it is equivalent
Newton's method on the non-zero variables.
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Practical Issues

For very large-scale problems with very spare solutions, practical
methods seem to need to consider two more issues:

e Continuation: Start with a large value of A and progressively
decrease it.

@ Sub-Optimization: Ignore variables that are unlikely to move
away from zero (temporarily or permanently).
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Extensions

@ The algorithm extends to problems of the form

min ¢(x) + r(x),

1I=<x=<u

where r(x) is separable and differentiable almost everywhere.

@ Two-metric projection algorithms also exist for other
constraints [Gafni & Bertsekas, 1984].
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Discussion

@ There are several closely related methods for using curvature
in ¢1-regularization algorithms, including:
o Perkins et al. [2003].
o Andrew & Gao [2007].
e Shi et al. [2007].
o Kim & Park [2010].
@ While descent is guaranteed, convergence theory is not fully
developed:

o Global convergence.
o Active set identification.
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Outline

@ Inexact Projected/Proximal Newton
@ Group ¢1-Regularization
@ Inexact Projected Newton
@ Inexact Proximal Newton
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Problems with non-separable case

@ We now turn to the group ¢1-regularization problem:

mxin f(x) =¢(x)+ Z Agllxgl[2
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Problems with non-separable case

@ We now turn to the group ¢1-regularization problem:

mxin f(x) =¢(x)+ Z Agllxgl[2

@ The regularizer is not separable.

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Group ¢1-Regularization
Inexact Projected Newton
Inexact Projected/Proximal Newton Inexact Proximal Newton

Problems with non-separable case

@ We now turn to the group ¢1-regularization problem:

mxin f(x) =¢(x)+ Z Agllxgl[2

@ The regularizer is not separable.

o But the regularizer is simple.
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Problems with non-separable case

@ We now turn to the group ¢1-regularization problem:

mxin f(x) =¢(x)+ Z Agllxgl[2

@ The regularizer is not separable.

o But the regularizer is simple.
@ We consider two methods that take advantage of this:

e Inexact projected Newton on an equivalent problem.
e Inexact proximal Newton applied directly.
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Converting to a Constrained Problem

@ We can introduce extra variables t to convert the problem
into a smooth optimization with cone constraints:

min £(x) + > Agte, subject to [|xg|l2 < tg, V.
-4

@ Alternately, we can the optimize over the norm ball:

. . <
min {(x), subject to zg:)\gHXg!b ST
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Converting to a Constrained Problem

@ We can introduce extra variables t to convert the problem
into a smooth optimization with cone constraints:

min £(x) + > Agte, subject to [|xg|l2 < tg, V.
g
@ Alternately, we can the optimize over the norm ball:
mxin {(x), subject to Z)\nggHQ <7
g

@ In both cases the constraints are simple; we can compute the
projection in linear time [Boyd & Vandenberghe, 2004,
Exercise 8.3(c), van den Berg et al., 2008].
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Projected Gradient

Recall the basic projected gradient step:

x1 — argmin [|x — (x* — aVF(x¥))]|3
xeC

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Group ¢1-Regularization
Inexact Projected Newton
Inexact Projected/Proximal Newton Inexact Proximal Newton

Projected Gradient

Recall the basic projected gradient step:

x1  argmin [|x — (x* — aVF(x¥))||3
xeC

Feasible Set
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Projected Gradient

Recall the basic projected gradient step:

xk1 — argmin ||x — (x* — aVF(x¥))]|3
xeC

Feasible Set
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Projected Gradient and Projected Newton

@ To speed the convergence, we might consider a scaled step:

xK+1 argmin ||x — (xk — adk)H%,
xeC

where d solves Hkd* = V£ (x¥).
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Projected Gradient and Projected Newton

@ To speed the convergence, we might consider a scaled step:

xK+1 argmin ||x — (xk — adk)H%,
xeC

where d solves Hkd* = V£ (x¥).
@ As we saw, in general this does not work.
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Projected Gradient and Projected Newton

@ To speed the convergence, we might consider a scaled step:

xK+1 argmin ||x — (xk — adk)H%,
xeC

where d solves Hkd* = V£ (x¥).
@ As we saw, in general this does not work.

@ To guarantee descent, projected Newton methods project
under a quadratic norm:

X1 argmin [|x — (x* — adk)|||2_|k,
xeC

where |y||q« = vy THXy [Levitin & Polyak, 1966].
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Projected Newton

o Projecting under the HX norm is equivalent to minimizing the
quadratic approximation over the convex set:

X1 argmin QX(x, a)
xeC

where

O (x, ) — f(xk)+(x—xk)TVf(xk)+%(x—xk)THk(x—xk)
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Projected Newton

o Projecting under the HX norm is equivalent to minimizing the
quadratic approximation over the convex set:

X1 argmin QX(x, a)

xeC

where
O (x, ) — f(xk)+(x—xk)TVf(xk)+%(x—xk)THk(x—xk)

@ In general, this projection will be expensive even if the
constraints are simple.

o May be inexpensive if H* is diagonal.
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Inexact Projected Newton

o If we want to use a non-diagonal H¥, we can consider an
inexact projected Newton method.
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Inexact Projected Newton

o If we want to use a non-diagonal H¥, we can consider an
inexact projected Newton method.

@ Analogous to the unconstrained HFN methods, we compute
the step using a constrained iterative solver.
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Inexact Projected Newton

o If we want to use a non-diagonal H¥, we can consider an
inexact projected Newton method.

@ Analogous to the unconstrained HFN methods, we compute
the step using a constrained iterative solver.

@ For example, we can minimize QX(y, a) use SPG iterations:

yFl argrzin Iy — (y* — s Vy Q(y, @))|[3.
ye
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Inexact Projected Newton

o If we want to use a non-diagonal H¥, we can consider an
inexact projected Newton method.

@ Analogous to the unconstrained HFN methods, we compute
the step using a constrained iterative solver.

@ For example, we can minimize QX(y, a) use SPG iterations:

Y+ argmin|[y — (v* — a5 Vy QX (y, )| 3

yeC

@ These iterations are dominated by the cost of:
e Euclidean projections and Hessian-vector products.
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Inexact Projected Newton

Feasible Set

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Group ¢1-Regularization
Inexact Projected Newton
Inexact Projected/Proximal Newton Inexact Proximal Newton

Inexact Projected Newton

Feasible Set [*
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Inexact Projected Newton

\Pc[;;k - aVE(x)]

Feasible St
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Inexact Projected Newton

Feasible St
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Inexact Projected Newton

Feasible Set|*
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Inexact Projected Newton

minxgc Q(X,(l)
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Inexact Projected Newton

Can we terminate this early?
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Inexact Projected Newton

Can we terminate this early?

o If we set yO = xX, then f(yk) < f(x¥) for k > 1 (for o small).

o Alternately, we can set & = 1 and show that d* = y¥ —x¥ is a

feasible descent direction for k > 1.
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Inexact Projected Newton

Can we terminate this early?

o If we set yO = xX, then f(yk) < f(x¥) for k > 1 (for o small).

o Alternately, we can set & = 1 and show that d* = y¥ —x¥ is a

feasible descent direction for k > 1.

In Schmidt et al. [2009], we used an L-BFGS approximation in an
inexact projected Newton method:

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Group ¢1-Regularization
Inexact Projected Newton
Inexact Projected/Proximal Newton Inexact Proximal Newton

Inexact Projected Newton

Can we terminate this early?

o If we set yO = xX, then f(yk) < f(x¥) for k > 1 (for o small).

o Alternately, we can set & = 1 and show that d* = y¥ —x¥ is a
feasible descent direction for k > 1.

In Schmidt et al. [2009], we used an L-BFGS approximation in an
inexact projected Newton method:

@ The (approximate-)Hessian-vector products take O(mn).
@ The SPG iterations use projections but not the objective.

o Efficient for optimizing costly functions with simple
constraints.
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Proximal Operators

@ Can we avoid introducing constraints and directly solve the
original non-smooth group ¢1-regularization problem?
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Proximal Operators

@ Can we avoid introducing constraints and directly solve the
original non-smooth group ¢1-regularization problem?

@ We can generalize projections to proximal operators:

1
prox, (x¥) = argmin EHX — x5 + r(x).
X

Mark Schmidt, NIPS Optimization Workshop 2010 Quasi-Newton and Hessian-Free Methods for NSO



Group ¢1-Regularization
Inexact Projected Newton
Inexact Projected/Proximal Newton Inexact Proximal Newton

Proximal Operators

@ Can we avoid introducing constraints and directly solve the
original non-smooth group ¢;-regularization problem?

@ We can generalize projections to proximal operators:
1
prox, (x¥) = argmin EHX — x5 + r(x).
X

@ The group ¢1-regularizer is simple; we can efficiently compute
the proximal operator in linear time [Wright et al., 2009].

1
k : k
prOXZLQ(X )e = arg;nln §ng - XgH% + Agllxgll2

sgn(xg) max{0, |[xg|]2 — Ag}
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Group ¢1-Regularization
Inexact Projected Newton
Inexact Projected/Proximal Newton Inexact Proximal Newton

Proximal Gradient and Proximal Newton

@ The basic proximal gradient step:

1
x*1  argmin §||x — (XK = aVFX)3 + r(x)
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Group ¢1-Regularization
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Proximal Gradient and Proximal Newton

@ The basic proximal gradient step:
xkFL arg):nin %Hx — (XK = aVF(xX)|3 + r(x)
@ To speed the convergence, we might consider a scaled step:
xk L arg)r(nin %Hx — (x* = adh)||3 + r(x),

where d* solves H*d* = V£ (x¥).
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Group ¢1-Regularization
Inexact Projected Newton
Inexact Projected/Proximal Newton Inexact Proximal Newton

Proximal Gradient and Proximal Newton

@ The basic proximal gradient step:
xkFL arg):nin %Hx — (XK = aVF(xX)|3 + r(x)
@ To speed the convergence, we might consider a scaled step:
xk L arg)r(nin %Hx — (x* = adh)||3 + r(x),

where d* solves H*d* = V£ (x¥).
@ But to ensure descent, we need to match the norms:

1
x1 « argmin §||x — (xk - adk)||ak + r(x)
X
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Inexact Proximal Newton

@ The proximal step under the HX norm is equivalent to
minimizing ar(x) and the quadratic approximation:

x1 — arg min Q¥ (x, a) + ar(x)
X
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Group ¢1-Regularization
Inexact Projected Newton
Inexact Projected/Proximal Newton Inexact Proximal Newton

Inexact Proximal Newton

@ The proximal step under the HX norm is equivalent to
minimizing ar(x) and the quadratic approximation:
x“1 « arg min QX (x, a) 4+ ar(x)
X

@ This problem will be expensive even if r(x) is simple.
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Inexact Proximal Newton

@ The proximal step under the HX norm is equivalent to
minimizing ar(x) and the quadratic approximation:

x1 — arg min Q¥ (x, a) + ar(x)
X
@ This problem will be expensive even if r(x) is simple.

@ We could use a diagonal scaling or Barzilai-Borwein steps
[Hofling & Tibshirani, 2009, Wright et al., 2009].
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Group ¢1-Regularization
Inexact Projected Newton
Inexact Projected/Proximal Newton Inexact Proximal Newton

Inexact Proximal Newton

@ The proximal step under the HX norm is equivalent to
minimizing ar(x) and the quadratic approximation:

x1 — arg min Q¥ (x, a) + ar(x)
X

@ This problem will be expensive even if r(x) is simple.

@ We could use a diagonal scaling or Barzilai-Borwein steps
[Hofling & Tibshirani, 2009, Wright et al., 2009].
@ To use a non-diagonal scaling, we can use an iterative solver:
o Use Euclidean proximal operators and Hessian-vector products.
o Guarantees descent after first iteration.
e With an L-BFGS approximation, suitable for optimizing costly
objectives with simple regularizers.
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Discussion

Easily extends to other group norms:

@ /s, norm: the projection/proximal operators can be computed
in O(nlog n)/O(n) [Duchi et al., 2008, Quattoni et al., 2009,
Wright et al, 2009].

@ Nuclear norm: the projection/proximal operators can be
computed in O(n%/?) [Cai et al., 2010].

Convergence theory of inexact projected/proximal Newton is not
fully developed:

@ Proof of global convergence.

@ Accuracy needed for convergence rates.
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© Discussion
@ Sums of Simple Regularizers
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Sums of Simple Regularizers

@ Recall the overlapping group ¢1-regularization problem:

minf(x)+ > Aa( Y Ixsll3)?

AC{1..p}  {BIACB}
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Sums of Simple Regularizers

@ Recall the overlapping group ¢1-regularization problem:

minf(x)+ > Aa( Y Ixsll3)?

AC{1..p}  {BIACB}

@ This regularizer is not simple.
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Sums of Simple Regularizers

@ Recall the overlapping group ¢1-regularization problem:

minf(x)+ > Aa( Y Ixsll3)?

AC{1..p}  {BIACB}

@ This regularizer is not simple.

@ But, it is the sum of simple regularizers.
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of Simple Regularizers

@ Recall the overlapping group ¢1-regularization problem:

minf(x)+ > Aa( Y Ixsll3)?

AC{1..p}  {BIACB}

This regularizer is not simple.

But, it is the sum of simple regularizers.

After converting to a constrained problem, we can use
Dykstra's [1983] algorithm to compute the projection.
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of Simple Regularizers

@ Recall the overlapping group ¢1-regularization problem:

minf(x)+ > Aa( Y Ixsll3)?

AC{1..p}  {BIACB}

This regularizer is not simple.

But, it is the sum of simple regularizers.

After converting to a constrained problem, we can use
Dykstra's [1983] algorithm to compute the projection.

Bauschke & Combettes [2008] generalize Dykstra's algorithm
to compute proximal operators for sums of simple functions.
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Other Non-Smooth Newton-like Methods

@ There is also recent work on other methods for computing the
proximal operator for overlapping group ¢1-regularization

[Jenatton et al., 2010, Kim & Xing, 2010, Liu & Ye, 2010,
Mairal et al., 2010].
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Other Non-Smooth Newton-like Methods

@ There is also recent work on other methods for computing the
proximal operator for overlapping group ¢1-regularization
[Jenatton et al., 2010, Kim & Xing, 2010, Liu & Ye, 2010,
Mairal et al., 2010].

@ Several other Newton-like methods for general non-smooth
optimization are available:

e Incorporating the sub-differential into the quadratic
approximation [Yu et al., 2008].

e Applying the basic method to a smoothed version of the
problem [Chen et al., 2010].

e Augmented Lagrangian and dual augmented Lagrangian
methods [Tomioka et al., 2011].
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Inexact Objective Information

In some scenarios we may have a stochastic objective:
@ We may be using a Monte Carlo approximation.
@ We may be using a mini-batch.
There is work on stochastic variants:
e Limited-memory quasi-Newton [Sunehag et al., 2009].
@ Hessian-free Newton [Martens, 2010].
e Optimal Barzilai-Borwein [Swersky, unpublished].

However, they don't share the fast convergence rates of
deterministic variants.
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Summary

@ Hessian-Free Newton and limited-memory BFGS methods are
two workhorses of unconstrained optimization.
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Summary

@ Hessian-Free Newton and limited-memory BFGS methods are
two workhorses of unconstrained optimization.

e Two-metric (sub-)gradient projection methods let us apply
these methods to problems with bound constraints or
non-differentiable but separable regularizers.
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Summary

@ Hessian-Free Newton and limited-memory BFGS methods are
two workhorses of unconstrained optimization.

e Two-metric (sub-)gradient projection methods let us apply
these methods to problems with bound constraints or
non-differentiable but separable regularizers.

@ Inexact projected/proximal Newton methods are an appealing
approach to optimizing costly objective functions with simple
constraints or simple non-differentiable regularizers.
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